NCHRP Web Document 68 (Project 9-27)

Relationships of HMA In-Place Air Voids, Lift Thickness, and Permeability Volume Four

Prepared for: National Cooperative Highway Research Program

TRANSPORTATION RESEARCH BOARD

OF THE NATIONAL ACADEMIES

Submitted by:

E. Ray Brown M. Rosli Hainin Allen Cooley Graham Hurley National Center for Asphalt Technology Auburn University Auburn, Alabama

September 2004

ACKNOWLEDGMENT

This work was sponsored by the American Association of State Highway and Transportation Officials (AASHTO), in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program (NCHRP), which is administered by the Transportation Research Board (TRB) of the National Academies.

DISCLAIMER

The opinion and conclusions expressed or implied in the report are those of the research agency. They are not necessarily those of the TRB, the National Research Council, AASHTO, or the U.S. Government. **This report has not been edited by TRB**.

THE NATIONAL ACADEMIES Advisers to the Nation on Science, Engineering, and Medicine

The **National Academy of Sciences** is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. On the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences.

The **National Academy of Engineering** was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. William A. Wulf is president of the National Academy of Engineering.

The **Institute of Medicine** was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, on its own initiative, to identify issues of medical care, research, and education. Dr. Harvey V. Fineberg is president of the Institute of Medicine.

The **National Research Council** was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both the Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. William A. Wulf are chair and vice chair, respectively, of the National Research Council.

The **Transportation Research Board** is a division of the National Research Council, which serves the National Academy of Sciences and the National Academy of Engineering. The Board's mission is to promote innovation and progress in transportation through research. In an objective and interdisciplinary setting, the Board facilitates the sharing of information on transportation practice and policy by researchers and practitioners; stimulates research and offers research management services that promote technical excellence; provides expert advice on transportation policy and programs; and disseminates research results broadly and encourages their implementation. The Board's varied activities annually engage more than 5,000 engineers, scientists, and other transportation researchers and practitioners from the public and private sectors and academia, all of whom contribute their expertise in the public interest. The program is supported by state transportation departments, federal agencies including the component administrations of the U.S. Department of Transportation, and other organizations and individuals interested in the development of transportation. **www.TRB.org**

www.national-academies.org

VOLUME FOUR TABLE OF CONTENTS

Page No.

TASK 3 –PART 1 AND 2

APPENDIX A 1	
APPENDIX B 3	8
APPENDIX C 4	.8
APPENDIX D 5	7
APPENDIX E 6	4
TASK 3 – PART 3	
APPENDIX A 7	'4
TASK 5	
APPENDIX A 7	'9
APPENDIX B21	9

TASK 3 – PART 1 AND 2

APPENDIX A

MIX DESIGN SUMMARY INFORMATION FOR PART 1

									Compactive	;		
Project	Name:	9-27							Device	: Pine Gy	ratory Comp	oactor
									Compactive	;		
Mixture	ID:	9.5 mm l	NMAS G	ranite ARZ	2				Effort	: 100 Gy	rations	
											Percent	
Binder Ty	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.717			Minus #200	5.0
Binder Gr	avity:	1.028			Effective 0	Gravity Soli	ds (Gse):	2.713			Added:	None
											Fiber	
					Bulk Gravi	ty Solids (0	Gsb):	2.676			Additive:	None
Sample	Asphalt	Drv	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	5.50	4756.2	126.0	118.0	2.295	2.489	5.01	7.8	18.9	59.0	1.00	86.4
2	5.50	4758.7	125.8	117.9	2.297	2.489	5.01	7.7	18.9	59.2	1.00	86.5
Avg								7.7	18.9	59.1	1.00	86.4
1	6.00	4783.6	126.9	118.1	2.309	2.470	5.51	6.5	18.9	65.5	0.91	87.0
2	6.00	4781.3	126.0	117.6	2.315	2.470	5.51	6.3	18.7	66.4	0.91	87.5
Avg								6.4	18.8	65.9	0.91	87.2
1	6.50	4806.4	126.1	117.7	2.331	2.452	6.01	4.9	18.6	73.4	0.83	88.7
2	6.50	4813.9	126.3	117.6	2.335	2.452	6.01	4.8	18.4	74.2	0.83	88.7
Avg								4.8	18.5	73.8	0.83	88.7
1	7.20	4824.1	126.0	116.6	2.357	2.427	6.72	2.9	18.3	84.3	0.74	89.9
2	7.20	4854.4	126.2	117.2	2.365	2.427	6.72	2.6	18.0	85.8	0.74	90.5
Avg								2.7	18.1	85.0	0.74	90.2

Table A.1Mix Design Summary for 9.5 mm NMAS Granite ARZ

Table A.2 Mix Design Summary for 9.5 mm NMAS Granite BRZ

Project I	Name:	9-27							Compactive Device: Compactive	Pine Gy	ratory Comp	actor
Mixture	ID:	9.5 mm I	NMAS G	ranite BRZ	Z				Effort:	100 Gyı	ations	
Binder Ty	vpe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.717			Percent Minus #200 Fillor Type	5.0
Binder Gr	avity:	1.028			Effective G Bulk Gravi	Gravity Soli ty Solids (C	ds (Gse): Gsb):	2.703 2.672			Added Fiber Additive	None None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	4.80	4787.6	129.0	117.3	2.357	2.507	4.38	6.0	16.0	62.6	1.14	85.5
2	4.80	4780.4	128.8	117.1	2.354	2.507	4.38	6.1	16.1	62.0	1.14	85.3
Avg								6.1	16.1	62.3	1.14	85.4
1	5.30	4802.0	128.4	116.5	2.375	2.488	4.88	4.5	15.8	71.3	1.03	86.6
2	5.30	4805.3	128.4	116.4	2.382	2.488	4.88	4.3	15.6	72.5	1.03	86.8
Avg								4.4	15.7	71.9	1.03	86.7
1	5.80	4818.5	128.0	115.8	2.397	2.470	5.38	3.0	15.5	80.9	0.93	87.8
2	5.80	4819.3	128.5	116.0	2.399	2.470	5.38	2.9	15.4	81.4	0.93	87.7
Avg								2.9	15.5	81.1	0.93	87.7

Table A.3 Mix Design Summary for 9.5 mm NMAS Granite TRZ

Project I <u>Mixture</u>	Name: ID:	9-27 9.5 mm	NMAS G	ranite TRZ	2				Compactive Device:Pine Gyratory Compactor Compactive Effort:100 Gyrations				
Binder Ty	vpe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.717			Percent Minus #200) 5.0	
Binder Gr	avity:	1.028			Effective G	Gravity Soli	ds (Gse):	2.702			Filler Type Added	: None	
					Bulk Gravi	ty Solids (Gsb):	2.674			Fiber Additive	: None	
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial	
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)	
1	5.30	4760.9	124.0	114.7	2.383	2.487	4.92	4.2	15.6	73.0	1.02	88.6	
2	5.30	4760.7	124.1	114.9	2.382	2.487	4.92	4.2	15.6	72.9	1.02	88.7	
Avg								4.2	15.6	72.9	1.02	88.6	
1	5.80	4782.3	123.6	114.2	2.402	2.469	5.42	2.7	15.4	82.5	0.92	89.9	
2	5.80	4791.2	124.0	114.6	2.404	2.469	5.42	2.6	15.3	82.8	0.92	90.0	
Avg								2.7	15.3	82.6	0.92	89.9	
1	6.30	4802.1	123.7	114.2	2.410	2.451	5.92	1.7	15.5	89.3	0.84	90.8	
2	6.30	4819.5	124.0	114.5	2.416	2.451	5.92	1.4	15.3	90.8	0.84	91.0	
Avg								1.5	15.4	90.0	0.84	90.9	

Table A.4 Mix Design Summary for 19.0 mm NMAS Granite ARZ

Project	Name:	9-27						Compactive	Device:	Pine Gy	ratory Compactor	
Mixture	ID:	19.0 GR	N ARZ					Compactive	Effort:	100 Gyr	ations	
Binder Ty	vpe: PG 6	7-22			Apparent (Gravity Sol	ids (Gsa):	2.711			Percent Minus #200	5.1
Binder G	ravity: 1	.028			Effective G	Gravity Soli	ds (Gse):	2.702			Filler Type Added:	None
					Bulk Gravi	ty Solids (0	Gsb):	2.672			Fiber Additive:	None
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	4.00	4693.5	120.6	112.7	2.393	2.537	3.58	5.7	14.0	59.5	1.42	88.1
2	4.00	4689.3	119.8	112.2	2.398	2.537	3.58	5.5	13.8	60.5	1.42	88.5
Avg								5.6	13.9	60.0	1.42	88.3
1	4.50	4697.2	120.3	112.2	2.408	2.518	4.09	4.4	13.9	68.7	1.25	89.2
2	4.50	4706.1	121.0	112.8	2.400	2.518	4.09	4.7	14.2	67.2	1.25	88.9
Avg								4.5	14.1	68.0	1.25	89.0
1	5.00	4742.7	120.4	112.1	2.416	2.499	4.59	3.3	14.1	76.4	1.11	90.0
2	5.00	4753.2	121.0	112.9	2.413	2.499	4.59	3.4	14.2	75.9	1.11	90.1
Avg								3.4	14.2	76.2	1.11	90.1

Table A.5 Mix Design Summary for 19.0 mm NMAS Granite BRZ

Project I	Name:	9-27	IMAS Granite BR7 Compactive Compactor Effort: 100 Gyrations									
Mixture	ID:	19 mm N	MAS Gr	anite BRZ					Effort:	100 Gyi	ations	
Binder Ty	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.714			Percent Minus #200 Filler Type	4.0
Binder Gr	Gravity: 1.028 Effective Gravity Bulk Gravity Solid					Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.714 2.680			Added: Fiber Additive:	None None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	-	(%)
1	3.50	4782.4	133.2	119.8	2.406	2.567	3.04	6.3	13.4	53.1	1.32	84.3
2	3.50	4749.0	133.3	120.1	2.402	2.567	3.04	6.4	13.5	52.5	1.32	84.3
Avg								6.4	13.46	52.8	1.32	84.3
1	4.00	4762.7	131.1	117.8	2.415	2.547	3.54	5.2	13.5	61.5	1.13	85.2
2	4.00	4774.6	132.5	118.9	2.413	2.547	3.54	5.3	13.6	61.3	1.13	85.0
Avg								5.2	13.55	61.4	1.13	85.1
1	4.50	4761.0	132.9	119.1	2.433	2.528	4.04	3.8	13.3	71.8	0.99	86.2
2	4.50	4805.2	131.8	118.3	2.438	2.528	4.04	3.6	13.1	72.9	0.99	86.6
Avg								3.7	13.2	72.4	0.99	86.4

Table A.6 Mix Design Summary for 19.0 mm NMAS Granite TRZ

Project Mixture	Name: ID:	9-27 19.0 mm	NMAS (Granite TR	Z				Compactive Device: Compactive Effort:	Pine Gyrato	ory Compactor	
Binder Ty	/pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.703			Percent Minus #200 Filler Type	5.0
Binder Gı	ravity:	1.028 Effective Gravity Solids (C Bulk Gravity Solids (Gsb) Dry Height Height Bulk Rice Effective Gravity Solids (Gsb)						2.697 2.666			Added: Fiber Additive:	None None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	1.00	(%)
1	3.50	4694.4	121.4	112.3	2.418	2.552	3.08	5.3	12.5	58.0	1.62	87.6
2	3.50	4698.1	122.5	112.9	2.417	2.552	3.08	5.3	12.5	57.8	1.62	87.3
Avg								5.3	12.5	57.9	1.62	87.5
1	4.00	4699.3	122.3	114.3	2.427	2.532	3.58	4.1	12.6	67.1	1.40	89.6
2	4.00	4709.6	121.4	112.1	2.427	2.532	3.58	4.2	12.6	67.0	1.40	88.5
Avg								4.2	12.6	67.0	1.40	89.0
1	4.50	4739.5	121.7	111.7	2.448	2.513	4.08	2.6	12.3	79.0	1.22	89.4
2	4.50	4729.5	121.0	111.2	2.452	2.513	4.08	2.4	12.2	79.9	1.22	89.7
Avg								2.5	12.2	79.5	1.22	89.5

Table A.7	Mix Design S	ummary for	37.5 mm	NMAS (Granite ARZ

Project N	Name:	9-27			7				Compactive Device Compactive	Pine Gyra	atory Compacto	or	
viixture	ID:	37.5 mm	I INIVIAS (Sranite AF	κ <u>Ζ</u>				Effort	TUU Gyra	tions		
Binder Ty	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.714			Percent Minus #200 Filler Type	3.0	
Binder Gr	avity:	1.029			Effective G Bulk Gravi	Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.700 2.685	00Added:85Fiber Additive:				
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm	
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitia	
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)	
1	3.50	4737.8	121.4	114.5	2.389	2.555	3.29	6.5	14.1	54.1	0.91	88.2	
2	3.50	4756.8	122.3	115.0	2.392	2.555	3.29	6.4	14.0	54.5	0.91	88.0	
Avg								6.4	14.1	54.3	0.91	88.1	
1	4.00	4777.9	122.1	114.4	2.410	2.536	3.80	5.0	13.9	64.1	0.79	89.0	
2	4.00	4789.0	121.4	114.1	2.412	2.536	3.80	4.9	13.8	64.6	0.79	89.4	
Avg								4.9	13.8	64.4	0.79	89.2	
1	4.50	4795.4	122.1	114.5	2.429	2.516	4.30	3.5	13.6	74.5	0.70	90.5	
2	4.50	4817.2	121.7	114.1	2.437	2.516	4.30	3.1	13.3	76.4	0.70	90.8	
Avg								3.3	13.5	75.5	0.70	90.7	

Table A.8 Mix Design Summary for 37.5 mm NMAS Granite BRZ

Project	Name:	9-27							Compactive Device Compactive	e Pine Gyra	tory Compact	or
Mixture	ID:	37.5 mm	NMAS (Granite BR	RZ				Effort	:100 Gyrat	ions	
Binder ⁻	Туре:	PG 67 -	22		Apparent (Gravity Sol	ids (Gsa):	2.713			Percent Minus #200 Filler Type	3.0
Binder	Gravity:	1.028 Effective Gravity Solids Bulk Gravity Solids (Gs Dry Height Height Bulk Rice E						2.709 2.685			Added: Fiber Additive:	None None
Sample Number	Asphalt Content	DryHeightHeightBulkRiceEffeWeight@ Nintial@ NdesignGravityGravityAs(grams)(mm)(mm)(g/cm^3)(g/cm^3)(g/cm^3)						VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	3.00	4674.9	125.9	114.5	2.460	2.583	2.66	4.8	11.1	57.2	1.13	86.6
2	3.00	4659.9	127.9	116.0	2.463	2.583	2.66	4.6	11.0	57.9	1.13	86.5
Avg								4.7	11.1	57.6	1.13	86.6
1	3.50	4683.8	129.7	116.6	2.460	2.563	3.16	4.0	11.6	65.4	0.95	86.3
2	3.50	4744.7	125.5	114.7	2.460	2.563	3.16	4.0	11.6	65.3	0.95	87.7
Avg								4.0	11.6	65.4	0.95	87.0
1	4.00	4762.1	127.7	114.6	2.472	2.543	3.67	2.8	11.6	75.9	0.82	87.2
2	4.00	4782.2	129.2	116.2	2.482	2.543	3.67	2.4	11.2	78.8	0.82	87.8
Avg								2.6	11.4	77.3	0.82	87.5

Table A.9 Mix Design Summary for 37.5 mm NMAS Granite TRZ

									Compactive	•		
Project	Name:	9-27							Device	Pine Gyra	tory Compacto	r
									Compactive	•		
Mixture	ID:	37.5 mm	NMAS (Granite TR	Z				Effort	:100 Gyrat	ions	
		_									Percent Minus	S
Binder 7	Гуре:	PG 67 -	22		Apparent (Gravity Sol	ids (Gsa):	2.714			#200) 3.0
Bindor	Gravity	1 028			Effective (0.700			Filler Type	e None
Billuer	Gravity.	1.020			Ellective C	Slavily Soli	as (Gse):	2.706				. None
					Bulk Gravi	ty Solias (SD):	2.685			Fiber Additive	: None
Sample	Asphalt	Drv	Heiaht	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	3.00	4788.8	122.6	113.8	2.457	2.580	2.71	4.8	11.2	57.6	1.11	88.4
2	3.00	4764.1	123.4	114.8	2.426	2.580	2.71	6.0	12.4	51.7	1.11	87.5
Avg								5.4	11.8	54.7	1.11	87.9
1	3.50	4730.4	127.5	117.0	2.430	2.560	3.21	5.1	12.7	59.9	0.94	87.1
2	3.50	4791.8	125.7	115.9	2.452	2.560	3.21	4.2	11.9	64.4	0.94	88.3
Avg								4.7	12.3	62.1	0.94	87.7
1	4.00	4767.5	125.2	114.8	2.463	2.541	3.71	3.1	11.9	74.4	0.81	88.9
2	4.00	4811.2	126.8	115.1	2.465	2.541	3.71	3.0	11.9	75.0	0.81	88.1
Avg								3.0	11.9	74.7	0.81	88.5

Table A.10 Mix Design Summary for 9.5 mm NMAS Gravel ARZ

									Compactive	;		
Project	Name:	9-27							Device	Pine Gyrat	ory Compacto	r
									Compactive)		
Mixture	ID:	9.5 mm	NMAS G	ravel ARZ					Effort	:100 Gyratio	ons	
											Percent Minus	3
Binder Ty	pe:	PG 67 - 2	2		Apparent (Gravity Sol	ids (Gsa):	2.654			#200) 5.0
Dindor Cr	o, it u	1 000			Effective (0.000			Filler Type	
Binder Gra	avity.	1.020				Stavily Solida (us (Gse).	2.029				None Nana
					Bulk Gravi	ity Solids (GSD):	2.011			Fiber Additive	. None
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	6.00	4820.4	132.9	122.6	2.251	2.404	5.75	6.4	18.9	66.5	0.87	86.4
2	6.00	4844.3	133.0	122.8	2.256	2.404	5.75	6.2	18.8	67.1	0.87	86.6
Avg								6.3	18.9	66.8	0.87	86.5
1	6.60	4855.7	131.9	121.4	2.284	2.384	6.35	4.2	18.3	77.0	0.79	88.2
2	6.60	4852.8	132.5	121.8	2.282	2.384	6.35	4.3	18.4	76.7	0.79	88.0
Avg								4.2	18.3	76.9	0.79	88.1
1	7.20	4902.3	132.4	121.7	2.303	2.364	6.95	2.6	18.2	85.8	0.72	89.5
2	7.20	4904.1	132.4	121.8	2.304	2.364	6.95	2.5	18.1	86.0	0.72	89.7
Avg								2.6	18.1	85.9	0.72	89.6

Table A.11 Mix Design Summary for 9.5 mm NMAS Gravel BRZ

									Compactive)		
Project	Name:	9-27							Device	Pine Gyra	atory Compac	tor
									Compactive			
Mixture	ID:	9.5 mm	NMAS G	ravel BRZ					Effort	:100 Gyra	tions	
											Percent Minus	5
Binder Ty	be:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.653			#200) 5.0
Dindor Cr		1 0 2 9			Effective (Provity Coli		2645			Filler Type) Nono
Binder Gra	avily.	1.020			Ellective G	the Calida (us (Gse).	2.040				None
					Bulk Gravi	ty Solids (GSD):	2.604			Fiber Additive	. None
Sample	Asphalt	Dry Height Height Bulk Rice Effective				Effective	VTM	VMA	VFA	Dust	%Gmm	
Number	Content	Weight	@ Nintial	@ Ndesign	n Gravity Gravity Asphalt						Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	5.50	4838.7	134.6	121.6	2.273	2.435	4.92	6.7	17.5	62.0	1.02	84.3
2	5.50	4845.4	134.7	121.7	2.281	2.435	4.92	6.3	17.2	63.3	1.02	84.6
Avg								6.5	17.4	62.7	1.02	84.5
1	6.20	4817.4	133.3	120.3	2.308	2.410	5.62	4.3	16.9	74.8	0.89	86.4
2	6.20	4874.2	134.8	121.3	2.318	2.410	5.62	3.8	16.5	76.9	0.89	86.5
Avg								4.0	16.7	75.8	0.89	86.5
1	6.90	4882.6	133.9	120.3	2.335	2.386	6.33	2.1	16.5	87.1	0.79	87.9
2	6.90	4894.5	134.2	120.5	2.341	2.386	6.33	1.9	16.3	88.3	0.79	88.1
Avg								2.0	16.4	87.7	0.79	88.0

Table A.12 Mix Design Summary for 9.5 mm NMAS Gravel TRZ

-									Compactive)		
Project	Name:	9-27							Device	Pine Gy	ratory Compa	ctor
									Compactive)		
Mixture	ID:	9.5 mm	NMAS G	ravel IRZ	1				Effort	:100 Gyr	ations	
Binder Ty	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.653			Percent Minus #200	5.0
Binder Gra	avity:	1.028			Effective G	Bravity Soli	ds (Gse):	2.649			Added	None
					Bulk Gravi	ty Solids (0	Gsb):	2.607			Fiber Additive	: None
Sample	Asphalt	Dry	Height	Height	Bulk Rice Effective n Gravity Gravity Asphalt			VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	n Gravity Gravity Asphalt			(0())	(0/)	(0()	Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	4.00	(%)
1	5.50	4847.4	132.9	121.4	2.288	2.438	4.91	6.1	17.1	64.0	1.02	85.7
2	5.50	4913.2	133.5	122.3	2.306	2.438	4.91	5.4	16.4	67.0	1.02	86.7
Avg								5.8	16.7	65.5	1.02	86.2
1	6.00	4847.3	133.5	122.3	2.325	2.420	5.41	3.9	16.2	75.7	0.92	88.0
2	6.00	4855.4	131.0	119.8	2.323	2.420	5.41	4.0	16.3	75.2	0.92	87.8
Avg								4.0	16.2	75.4	0.92	87.9
1	6.50	4799.1	129.2	117.4	2.342	2.403	5.91	2.5	16.0	84.2	0.85	88.6
2	6.50	4878.3	131.2	119.4	2.340	2.403	5.91	2.6	16.1	83.7	0.85	88.6
Avg								2.6	16.0	83.9	0.85	88.6

Table A.13Mix Design Summary for 19.0 mm NMAS Gravel ARZ

									Compactive	9		
Project	Name:	9-27							Device	:Pine Gy	ratory Compa	ctor
									Compactive)		
Mixture	ID:	19.0 mm	NMAS (Gravel AR	Z				Effort	:100 Gyr	ations	
											Percent Minus	6
Binder Ty	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.644			#200) 5.0
	.,	4 000						0.004			Filler Type	•
Binder Gra	avity:	1.028			Effective G	Sravity Soli	ds (Gse):	2.634			Added	None
					Bulk Gravi	ty Solids (0	Gsb):	2.600			Fiber Additive	: None
Sample	Asphalt	Drv	Heiaht	Height	Bulk Rice Effective				VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesian	n Gravity Gravity Asphalt						Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	4.00	4804.8	128.8	119.3	2.316	2.479	3.51	6.6	14.5	54.7	1.43	86.6
2	4.00	4781.4	128.3	118.8	2.312	2.479	3.51	6.7	14.6	54.0	1.43	86.4
Avg								6.6	14.5	54.3	1.43	86.5
1	4.70	4778.4	127.3	117.3	2.344	2.454	4.21	4.5	14.1	68.3	1.19	88.0
2	4.70	4826.5	128.7	118.7	2.340	2.454	4.21	4.6	14.2	67.4	1.19	88.0
Avg								4.5	14.1	67.9	1.19	88.0
1	5.40	4838.0	127.7	117.3	2.370	2.429	4.91	2.4	13.8	82.4	1.02	89.6
2	5.40	4841.4	127.7	117.3	2.370	2.429	4.91	2.4	13.7	82.4	1.02	89.6
Avg								2.4	13.7	82.4	1.02	89.6

Table A.14	Mix Design	Summary 1	for 19.0 mn	n NMAS	Gravel BRZ

	/ • •								Compactive	9		
Project	Name:	9-27							Device	:Pine Gyra	atory Compact	tor
									Compactive	e		
Mixture	ID:	19 mm N	MAS Gr	avel BRZ					Effort	:100 Gyra	tions	
											Percent Minus	6
Binder Ty	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.644			#200) <u>5</u> .0
	.,	4 000						0.040			Filler Type	9
Binder Gra	avity:	1.028			Effective G	Fravity Soli	ds (Gse):	2.640			Added	None
					Bulk Gravi	ty Solids (Gsb):	2.595			Fiber Additive	: None
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	4.00	4802.4	133.2	119.8	2.355	2.484	3.35	5.2	12.9	59.6	1.49	85.3
2	4.00	4806.8	133.3	120.1	2.349	2.484	3.35	5.4	13.1	58.4	1.49	85.2
Avg								5.3	13.0	59.0	1.49	85.2
1	4.50	4815.3	131.1	117.8	2.378	2.466	3.85	3.6	12.5	71.5	1.30	86.7
2	4.50	4790.3	132.5	118.9	2.357	2.466	3.85	4.4	13.2	66.6	1.30	85.8
Avg								4.0	12.9	69.1	1.30	86.2
1	5.00	4835.1	132.9	119.1	2.380	2.448	4.35	2.8	12.9	78.3	1.15	87.1
2	5.00	4846.8	131.8	118.3	2.387	2.448	4.35	2.5	12.6	80.3	1.15	87.5
Avg								2.6	12.7	79.3	1.15	87.3

Table A.15 Mix Design Summary for 19.0 mm NMAS Gravel TRZ

Project I	Name:	9-27							Compactive Device	e :Pine Gy	ratory Compa	ctor
Mixture	ID:	19 mm N	MAS Gr	avel TRZ					Compactive	e :100 Gyra	ations	
Binder Typ	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.644			Percent Minus #200 Filler Type	5 5.0
Binder Gra	avity:	1.028			Effective G	Gravity Soli	ds (Gse):	2.637			Added	None
					Bulk Gravi	ty Solids (Gsb):	2.597			Fiber Additive	: None
Sample Number	Asphalt Content	Dry Weight	Height Ø Nintial	Height @ Ndesign	Bulk Rice Effective n Gravity Gravity Asphalt			VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm Ø Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	riopriait	(%)
1	4.00	4843.5	128.8	118.3	2.355	2.481	3.43	5.1	13.0	60.7	1.46	87.2
2	4.00	4847.9	130.0	119.5	2.340	2.481	3.43	5.7	13.5	57.8	1.46	86.7
Avg								5.4	13.2	59.2	1.46	86.9
1	4 50	4860.2	120.5	118.5	2 373	2 463	3.03	37	12.7	71.3	1 27	88.2
2	4.50	4848.8	129.5	117.8	2.373	2.463	3.93	3.5	12.6	72.2	1.27	88.5
Avg							0.00	3.6	12.7	71.8	1.27	88.4
1	5.00	4897.5	128.5	117.5	2.400	2.445	4.44	1.8	12.2	84.9	1.13	89.8
2	5.00	4890.7	128.8	117.7	2.394	2.445	4.44	2.1	12.4	83.2	1.13	89.5
Avg								2.0	12.3	84.0	1.13	89.6

Table A.16Mix Design Summary for 37.5 mm NMAS Gravel ARZ

Project I	Name:	9-27							Compactive Device	; Pine Gy	ratory Compa	ictor
Mixture	ID:	37.5 mm	NMAS (Gravel AR	Z				Compactive Effort	; :100 Gyra	ations	
Binder Typ	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.644		<u> </u>	Percent Minus #200	s) 3.0
Binder Gravity:		1.028			Effective G Bulk Gravi	Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.643 2.608			Added Fiber Additive	: None : None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	-	(%)
1	3.50	4712.0	124.2	115.7	2.354	2.505	2.99	6.0	12.9	53.3	1.00	87.6
2	3.50	4739.0	124.8	116.7	2.352	2.505	2.99	6.1	13.0	52.8	1.00	87.8
Avg								6.1	12.9	53.0	1.00	87.7
1	4.00	4727.0	123.5	115.7	2.353	2.487	3.50	5.4	13.4	59.9	0.86	88.7
2	4.00	4701.4	123.0	114.9	2.374	2.487	3.50	4.5	12.6	64.1	0.86	89.2
Avg								4.9	13.0	62.0	0.86	88.9
1	4.50	4801.8	125.1	116.9	2.380	2.468	4.00	3.6	12.8	72.0	0.75	90.1
2	4.50	4741.2	125.1	116.6	2.371	2.468	4.00	3.9	13.2	70.0	0.75	89.5
Avg							3.8	13.0	71.0	0.75	89.8	

Table A.17 Mix Design Summary for 37.5 mm NMAS Gravel BRZ

Project	Name:	9-27							Compactive Device Compactive	e :Pine Gyra	atory Compact	tor
Mixture	ID:	37.5 mm	NMAS (Gravel BR	Z				Effort	:100 Gyrat	tions	
Binder Ty	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.643			Percent Minus #200 Filler Type	3) 3.0
Binder Gravity:		1.029			Effective G Bulk Gravi	Gravity Soli ity Solids (0	ds (Gse): Gsb):	2.638 2.607			Added Fiber Additive	None None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravitv	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	3.00	4653.6	129.1	115.5	2.366	2.520	2.55	6.1	12.0	49.0	1.18	84.0
2	3.00	4676.1	128.8	115.2	2.368	2.520	2.55	6.0	11.9	49.2	1.18	84.0
Avg								6.1	11.9	49.1	1.18	84.0
1	3.50	4699.8	129.5	115.5	2.376	2.501	3.05	5.0	12.0	58.5	0.98	84.7
2	3.50	4734.7	131.2	116.9	2.365	2.501	3.05	5.5	12.5	56.3	0.98	84.2
Avg								5.2	12.2	57.4	0.98	84.5
1	4.00	4740.0	128.7	114.7	2.426	2.483	3.55	2.3	10.7	78.6	0.84	87.1
2	4.00	4728.2	128.6	114.9	2.402	2.483	3.55	3.2	11.5	71.9	0.84	86.5
Avg								2.8	11.1	75.2	0.84	86.8

Project	Name:	9-27							Compactive Device	e Pine Gy	ratory Compa	ctor
Mixture	ID:	37.5 mm	NMAS (Z				Effort	e :100 Gyr	ations	
Binder Ty	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.643			Percent Minus #200 Filler Type	3.0
Binder Gra	avity:	1.028			Effective G Bulk Gravi	Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.638 2.607			Added Fiber Additive	None None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	BulkRiceEffectivenGravityGravityAsphalt			VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	3.00	4712.9	129.1	115.5	2.357	2.520	2.55	6.5	12.3	47.6	1.17	83.7
2	3.00	4698.7	128.8	115.2	2.382	2.520	2.55	5.5	11.4	52.0	1.17	84.6
Avg								6.0	11.8	49.8	1.17	84.1
1	3.50	4720.6	129.5	115.5	2.373	2.501	3.06	5.1	12.2	58.0	0.98	84.6
2	3.50	4722.1	131.2	116.9	2.367	2.501	3.06	5.3	12.4	56.9	0.98	84.3
Avg								5.2	12.3	57.4	0.98	84.5
1	4 00	4746.2	128 7	114 7	2 404	2 483	3 56	32	11 5	72.5	0.84	86.3
2	4 00	4678.2	128.6	114.9	2 383	2 483	3.56	4.0	12.3	67.2	0.84	85.8
Avg			.20.0		2.000	2.100	0.00	3.6	11.9	69.9	0.84	86.0

Table A.18 Mix Design Summary for 37.5 mm NMAS Gravel TRZ

Table A.19 Mix Design Summary for 9.5 mm NMAS Limestone ARZ

Project Mixture	Name: ID:	9-27 9.5 mm	NMAS Li	mestone A	ARZ				Compactive Device Compactive Effort	9 :Pine Gyra 9 :100 Gyrat	itory Compac	tor
Binder Typ	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.764			Percent Minus #200 Filler Type	s 0 4.0
Binder Gravity:		1.028			Effective G Bulk Gravi	Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.750 2.727			Added Fiber Additive	None None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Rice Effective Gravity Gravity Asphalt (g/cm^3) (g/cm^3) (%)			VTM	VMA (%)	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#) 1	5.50	4854.5	126.3	115.9	2.388	2.518	5.20	5.2	17.3	70.1	0.77	87.0
2	5.50	4820.9	125.4	115.0	2.391	2.518	5.20	5.0	17.1	70.6	0.77	87.1
Avg								5.1	17.2	70.3	0.77	87.1
1	6.00	4886.7	127.2	116.6	2.389	2.499	5.71	4.4	17.6	75.2	0.70	87.6
2	6.00	4865.7	126.4	115.9	2.394	2.499	5.71	4.2	17.5	76.0	0.70	87.8
Avg								4.3	17.6	75.6	0.70	87.7
1	6.50	4890.9	126.4	115.7	2.404	2.480	6.21	3.0	17.6	82.7	0.64	88.7
2	6.50	4915.0	126.9	116.1	2.408	2.480	6.21	2.9	17.4	83.4	0.64	88.8
Avg								3.0	17.5	83.0	0.64	88.8

Proiect	Name:	9-27							Compactive Device	e :Pine Gvr	ratory Compact	tor
Mixture	ID:	9.5 mm	NMAS Li	mestone E	BRZ				Compactive Effort	e :100 Gvra	ations	
Binder Typ	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.761		<u> </u>	Percent Minus #200	s 0 4.0
Binder Gra	Binder Gravity:				Effective G Bulk Gravi	Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.753 2.725			Filler Type Added Fiber Additive	e : None : None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	•	(%)
1	4.50	4819.6	127.7	114.3	2.420	2.560	4.14	5.5	15.2	64.0	0.97	84.6
2	4.50	4797.8	127.7	114.4	2.400	2.560	4.14	6.3	15.9	60.7	0.97	84.0
Avg								5.9	15.6	62.3	0.97	84.3
1	5.00	4807.2	127.3	113.9	2.426	2.540	4.64	4.5	15.4	70.8	0.86	85.4
2	5.00	4817.8	127.7	114.0	2.433	2.540	4.64	4.2	15.2	72.3	0.86	85.5
Avg								4.4	15.3	71.6	0.86	85.5
1	5.50	4842.3	127.4	113.5	2.455	2.521	5.14	2.6	14.9	82.4	0.78	86.8
2	5.50	4840.7	127.7	113.9	2.446	2.521	5.14	3.0	15.2	80.4	0.78	86.5
Avg								2.8	15.0	81.4	0.78	86.6

Table A.20 Mix Design Summary for 9.5 mm NMAS Limestone BRZ

Project I	Name:	9-27							Compactive Device	e :Pine Gy	ratory Compa	ictor
Mixture	ID:	9.5 mm	NMAS Li	mestone 7	ſRZ				Compactive Effort	e :100 Gyr	ations	
Binder Typ	be:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.761			Percent Minus #200 Filler Type	s) 5.0
Binder Gravity:		1.028			Effective G Bulk Gravi	Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.742 2.725			Added Fiber Additive	None None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	gn Gravity Gravity (r/m 42)				VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	4.00	4797.0	126.6	113.4	2.430	2.570	3.78	5.5	14.4	62.0	1.32	84.7
2	4.00	4801.5	127.1	114.0	2.415	2.570	3.78	6.0	14.9	59.6	1.32	84.3
Avg								5.8	14.7	60.8	1.32	84.5
1	4.50	4805.0	126.1	112.6	2.445	2.550	4.28	4.1	14.3	71.2	1.17	85.6
2	4.50	4833.4	126.3	113.0	2.450	2.550	4.28	3.9	14.2	72.1	1.17	85.9
Avg								4.0	14.2	71.7	1.17	85.8
1	5.00	4801.3	124.2	110.7	2.491	2.531	4.79	1.6	13.2	88.0	1.04	87.7
2	5.00	4783.9	124.2	110.7	2.484	2.531	4.79	1.9	13.4	86.2	1.04	87.5
Avg								1.7	13.3	87.1	1.04	87.6

Table A.21Mix Design Summary for 9.5 mm NMAS Limestonr TRZ

Table A.22 Mix Design Summary for 19.0 mm NMAS Limestone ARZ

Project I	Name:	9-27							Compactive Device	e :Pine Gy	ratory Compa	ctor
Mixture	ID:	19.0 mm	NMAS L	imestone	ARZ				Effort	, :100 Gyr	ations	
Binder Typ	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.754			Percent Minus #200 Fillor Type	4.0
Binder Gra	avity:	1.028 Effective Gravity Solid Bulk Gravity Solid				Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.748 2.702			Added: Fiber Additive:	None None
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	3.50	4870.9	123.8	114.1	2.446	2.596	2.89	5.8	12.6	54.4	1.39	86.9
2	3.50	4863.8	123.6	113.8	2.438	2.596	2.89	6.1	12.9	52.9	1.39	86.5
Avg								5.9	12.8	53.7	1.39	86.7
1	4.00	4899.6	124.4	114.6	2.452	2.575	3.39	4.8	12.9	62.7	1.18	87.7
2	4.00	4873.8	123.7	114.3	2.460	2.575	3.39	4.5	12.6	64.4	1.18	88.3
Avg								4.6	12.7	63.6	1.18	88.0
1	4.50	4841.3	121.9	112.3	2.473	2.555	3.89	3.2	12.6	74.3	1.03	89.1
2	4.50	4832.3	121.3	111.6	2.486	2.555	3.89	2.7	12.1	77.7	1.03	89.5
Avg								3.0	12.4	76.0	1.03	89.3

Project	Name:	9-27							Compactive Device Compactive	e Pine Gy	ratory Compa	ictor
Mixture	ID:	19 mm N	MAS Lir	nestone T	RZ				Effort	, :100 Gyr	ations	
Binder Ty	pe:	PG 67 - 22Apparent Grave1.028Effective Grave				Gravity Sol	ids (Gsa):	2.755			Percent Minus #200 Filler Type	5) 5.0
Binder Gra	avity:	1.028Effective Gravity Solid Bulk Gravity Solids (G				ds (Gse): Gsb):	2.746 2.706			Added Fiber Additive	None	
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	νμα	VEA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt	(0())	(0())		Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm) 123.4	(mm) 110.4	(g/cm^3)	(g/cm^3)	(%) 2 47	<u>(%)</u> 53	(%)	(%)	2.03	(%)
2	3.00	4772.9	123.9	111.0	2.484	2.615	2.47	5.0	11.0	54.2	2.03	85.1
Avg								5.2	11.1	53.4	2.03	84.9
1	3.50	4875.3	125.6	112.7	2.504	2.594	2.97	3.5	10.7	67.5	1.68	86.6
2	3.50	4823.3	125.8	112.5	2.489	2.594	2.97	4.1	11.3	63.8	1.68	85.8
Avg								3.8	11.0	65.6	1.68	86.2
1	4.00	4846.9	124.5	111.2	2.519	2.574	3.47	2.2	10.7	79.8	1.44	87.4
2	4.00	4830.1	124.5	110.8	2.525	2.574	3.47	1.9	10.4	81.7	1.44	87.3
Avg								2.0	10.5	80.7	1.44	87.3

Table A.23 Mix Design Summary for 19.0 mm NMAS Limestone BRZ

Table A.24 Mix Design Summary for 19.0 mm NMAS Limestone TRZ

									Compactive)		
Project I	Name:	9-27							Device	Pine Gy	ratory Compa	ctor
									Compactive)		
Mixture	ID:	19 mm N	MAS Lir	nestone T	RZ				Effort	:100 Gyr	ations	
											Percent Minus	5
Binder Typ	be:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.755			#200	5.0
	.,	vity: 1.028 Effective Gravity Solids					0 7 40			Filler Type	;	
Binder Gra	avity:	1.028 Effective Gravity Solids (G				ds (Gse):	2.746			Added	None	
		Bulk Gravity Solids (Gsb):					Gsb):	2.706			Fiber Additive	None
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	3.00	4760.1	123.4	110.4	2.475	2.615	2.47	5.3	11.3	52.6	2.03	84.7
2	3.00	4772.9	123.9	111.0	2.484	2.615	2.47	5.0	11.0	54.2	2.03	85.1
Avg								5.2	11.1	53.4	2.03	84.9
1	3.50	4875.3	125.6	112.7	2.504	2.594	2.97	3.5	10.7	67.5	1.68	86.6
2	3.50	4823.3	125.8	112.5	2.489	2.594	2.97	4.1	11.3	63.8	1.68	85.8
Avg								3.8	11.0	65.6	1.68	86.2
1	4.00	4846.9	124.5	111.2	2.519	2.574	3.47	2.2	10.7	79.8	1.44	87.4
2	4.00	4830.1	124.5	110.8	2.525	2.574	3.47	1.9	10.4	81.7	1.44	87.3
Avg								2.0	10.5	80.7	1.44	87.3

-		9-27							Device	:Pine Gy	ratory Compa	ctor
Mixture ID:	:	37.5 mm	NMAS L	.imestone	ARZ				Effort	- :100 Gyr	ations	
Binder Type:		PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.763			Percent Minus #200 Filler Type	3 3.0
Binder Gravity	ty:	1.028 Effective Gravity So Bulk Gravity Solids				Gravity Soli ty Solids (0	ds (Gse): Gsb):	2.743 2.736			Added Fiber Additive	None: None
Sample As Number Co	sphalt ontent	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	<u>Dust</u> Asphalt	%Gmm @ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	2.50	4794.4	120.4	112.4	2.436	2.633	2.40	7.5	13.2	43.2	1.25	86.4
2	2.50	4830.4	121.2	113.0	2.457	2.633	2.40	6.7	12.4	46.2	1.25	87.0
Avg								7.1	12.8	44.7	1.25	86.7
1 :	3.00	4859.0	121.4	113.1	2.473	2.612	2.90	5.3	12.3	56.7	1.03	88.2
2 :	3.00	4835.1	120.9	112.5	2.472	2.612	2.90	5.4	12.3	56.6	1.03	88.1
Avg								5.3	12.3	56.7	1.03	88.1
	0.50				0.510	0.500						
	3.50	4808.5	119.3	110.1	2.519	2.592	3.40	2.8	11.1	74.9	0.88	89.7
2	3.50	4819.2	120.3	111.2	2.508	2.592	3.40	3.2	11.5	/2.0	0.88	89.5
Avg								3.0	11.3	/3.5	0.88	89.6

Table A.25 Mix Design Summary for 37.5 mm NMAS Limestone ARZ

Table A.26 Mix Design Summary for 37.5 mm NMAS Limestone BRZ

									Compactive)		
Project I	Name:	9-27							Device	Pine Gy	ratory Compa	ctor
									Compactive	;		
Mixture	ID:	37.5 mm	NMAS L	imestone	BRZ				Effort	:100 Gyr	ations	
											Percent Minus	3
Binder Typ	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.762			#200) 3.0
		ty: 1.029 Effective Gravity						0.740			Filler Type))
Binder Gra	avity:	1.029		Effective Gravity Solids (C				2.746			Added	None
		Bulk Gravity Solids (Gsb):				jsd):	2.738			Fiber Additive	None	
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	2.00	4770.6	126.6	114.1	2.480	2.657	1.89	6.7	11.2	40.7	1.58	84.1
2	2.00	4792.3	127.0	115.0	2.468	2.657	1.89	7.1	11.7	38.9	1.58	84.1
Avg								6.9	11.4	39.8	1.58	84.1
1	2.50	4773.5	126.6	112.9	2.504	2.636	2.40	5.0	10.8	53.9	1.25	84.7
2	2.50	4736.2	123.1	111.5	2.501	2.636	2.40	5.1	11.0	53.1	1.25	85.9
Avg								5.1	10.9	53.5	1.25	85.3
1	3.00	4776.4	124.0	111.2	2.539	2.615	2.90	2.9	10.0	71.1	1.04	87.1
2	3.00	4777.4	125.9	112.9	2.532	2.615	2.90	3.2	10.3	69.2	1.04	86.8
Avg								3.0	10.2	70.1	1.04	86.9

Table A.27 Mix Design Summary for 37.5 mm NMAS Limestone TRZ

									Compactive	;		
Project I	Name:	9-27							Device	Pine Gy	ratory Compa	ctor
									Compactive)		
Mixture	ID:	37.5mm	NMAS L	imestone	TRZ				Effort	:100 Gyr	ations	
											Percent Minus	6
Binder Typ	be:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.763			#200) 3.0
	.,	4 000						0 7 40			Filler Type))
Binder Gra	avity:	1.028			Effective C	sravity Soli	ds (Gse):	2.749			Added	None
		Bulk Gravity Solids (Gsb):				Gsb):	2.737			Fiber Additive	: None	
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	Dust	%Gmm
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				Asphalt	@ Ninitial
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		(%)
1	2.50	4834.9	122.4	112.0	2.505	2.639	2.33	5.1	10.8	52.8	1.29	86.9
2	2.50	4687.3	122.4	112.0	2.516	2.639	2.33	4.6	10.4	55.1	1.29	87.2
Avg								4.9	10.6	53.9	1.29	87.1
1	3.00	4820.0	121.2	110.7	2.530	2.618	2.83	3.3	10.3	67.6	1.06	88.3
2	3.00	4813.2	121.5	111.2	2.513	2.618	2.83	4.0	10.9	63.3	1.06	87.9
Avg								3.7	10.6	65.5	1.06	88.1
1	3.50	4895.9	124.0	112.7	2.532	2.597	3.33	2.5	10.7	76.6	0.90	88.6
2	3.50	4927.6	124.1	113.0	2.536	2.597	3.33	2.4	10.6	77.7	0.90	88.9
Avg								2.4	10.6	77.1	0.90	88.8

Table A.28 Mix Design Summary for 9.5 mm NMAS Granite SMA

									Compactive	;		
Project	Name:	9-27							Device	Pine Gy	ratory Compac	ctor
									Compactive	;		
Mixture	ID:	9.5 mm	Granite S	SMA					Effort	:75 Gyra	tions	
			<u>_</u>					0.007			Percent Minus	
Binder Ty	pe:	PG 67 - 22	2		Apparent	Gravity Sol	ids (Gsa):	2.687			#200	9.0
Binder Gra	avitv [.]	1 028			Effective 6	Gravity Soli	ds (Gse) [.]	2 687			Added:	Marble Dust
	avity.	1.020			Bulk Gravi	ity Solids (Gsh) [.]	2 640			Fiber Additive:	Cellulose
								2.010				Condicoco
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	VCA	VCA _{drc}
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt					
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	(%)	(%)
1	6.20	4596.3	134.6	119.1	2.254	2.443	5.55	7.7	19.9	61.1	32.6	
2	6.20	4662.2	135.1	119.5	2.274	2.443	5.55	6.9	19.2	64.0	32.0	
3	6.20	4665.9	134.8	119.1	2.282	2.443	5.55	6.6	19.5	62.6	31.8	
								7.1	19.5	62.6	32.1	41.9
1	6.90	4681.3	133.8	117.9	2.305	2.418	6.25	4.7	18.7	75.0	31.1	
2	6.90	4678.6	134.0	118.1	2.303	2.418	6.25	4.8	18.8	74.6	31.2	
3	6.90	4677.5	134.3	118.5	2.295	2.418	6.25	5.1	18.7	74.8	31.4	
								4.8	18.7	74.8	31.2	41.9
1	7.60	4678.3	132.8	117.3	2.319	2.394	6.96	3.1	18.8	83.4	30.7	
2	7.60	4772.6	134.7	118.7	2.322	2.394	6.96	3.0	18.7	83.9	30.6	
3	7.60	4700.3	133.8	118.0	2.318	2.394	6.96	3.1	18.8	83.7	30.7	
								3.1	18.8	83.7	30.7	41.9

Table A.29Mix Design Summary for 12.5 mm NMAS Granite SMA

									Compactive)		
Project	Name:	9-27							Device	Pine Gy	ratory Compac	ctor
									Compactive)		
Mixture	ID:	12.5 mm	GRANI	TE SMA					Effort	:75 Gyra	tions	
											Percent Minus	
Binder Typ	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.713			#200	8.0
Dindor Cr	a. it. ii	1 000			Effective (0.000			Filler Type	Marbla Duat
Binder Gra	avily:	1.029			Ellective G	ty Solida (us (Gse):	2.092			Added.	
					Duik Glavi	ty Solius (350).	2.079			FIDEI Additive.	Cellulose
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	VCA	VCA _{drc}
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt					
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		
1	6.20	4663.6	134.4	117.9	2.327	2.447	6.02	4.9	18.5	73.5	30.6	
2	6.20	4668.5	133.8	117.3	2.324	2.447	6.02	5.0	18.6	73.0	30.7	
Avg	6.20	4676.0	133.9	117.2	2.335	2.447	6.02	4.6	18.2	73.3	30.3	
								4.8	18.5	73.3	30.5	42.7
1	6.70	4653.6	134.5	118.2	2.324	2.429	6.52	4.3	19.1	77.3	30.7	
2	6.70	4662.3	135.5	120.9	2.333	2.429	6.52	4.0	18.8	78.8	30.4	
Avg	6.70	4675.4	133.2	117.4	2.343	2.429	6.52	3.5	18.4	78.1	30.1	
								3.9	18.7	78.1	30.4	42.7
1	7.20	4636.4	133.0	117.2	2.331	2.411	7.02	3.3	19.2	82.7	30.4	
2	7.20	4666.9	133.6	117.4	2.342	2.411	7.02	2.9	18.9	84.7	30.1	
Avg	7.20	4675.6	133.7	118.2	2.338	2.411	7.02	3.1	19.0	83.7	30.3	
								3.1	19.0	83.7	30.3	42.7

Table A.30 Mix Design Summary for 19.0 mm NMAS GraniteSMA

Project	Name:	9-27							Compactive Device Compactive	e :Pine Gyi e	ratory Compa	ictor
Mixture	ID:	19mm G	ranite SM	A					Effort	:75 Gyrat	tions	
Binder Ty	/pe:	PG 67 - 22	2		Apparent	Gravity Sol	ids (Gsa):	2.714			Percent Minus #200 Filler Type	8) 8.0
Binder G	ravity:	1.029			Effective C	Gravity Soli	ds (Gse):	2.714			Added	:Marble Dust
	-		Bulk Gravity Solids (Gsb):				2.677			Fiber Additive	: Cellulose	
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravitv	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	VCA	VCA _{drc}
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)		
1	6.20	4615.4	132.8	116.7	2.359	2.464	5.71	4.3	17.3	75.5	29.6	
2	6.20	4589.7	132.7	115.9	2.357	2.464	5.71	4.4	17.4	75.0	29.6	
3	6.20	4613.0	134.1	118.4	2.343	2.464	5.71	4.9	17.9	72.7	30.0	
Avg								4.5	17.6	74.4	29.7	42.0
1	6.70	4596.8	133.6	116.5	2.357	2.446	6.21	3.6	17.8	79.8	29.6	
2	6.70	4622.6	132.1	115.9	2.363	2.446	6.21	3.4	17.6	80.8	29.4	
	6.70	4617.4	132.8	115.9	2.357	2.446	6.21	3.6	17.9	79.7	29.6	
Avg								3.5	17.8	80.1	29.6	42.0
1	7.20	4542.2	129.6	115.0	2.362	2.428	6.72	2.7	18.1	85.1	29.5	
2	7.20	4616.8	131.9	115.3	2.366	2.428	6.72	2.6	18.0	85.8	29.4	
	7.20	4630.8	132.6	115.5	2.356	2.428	6.72	3.0	18.3	83.8	29.7	
Avg								2.7	18.2	84.9	29.5	42.0

Table A.31	Mix Design	Summary f	for 9.5	mm NMAS	Gravel SMA
	0				

									Compactive)			
Project	Name:	9-27							Device	Pine Gy	ratory Compac	ctor	
									Compactive)			
Mixture	ID:	9.5 mm	Gravel S	MA					Effort	:75 Gyra	tions		
											Percent Minus		
Binder Ty	/pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.642			#200	9.0	
Bindor G	rovitve	1 029			Effoctivo (Provity Soli	de (Geo):	2 6 2 7			Filler Type	Marblo Duct	
Billuer G	lavily.	1.020		Bulk Gravity Soli			us (Use). Geh):	2.037			Fiber Additive:		
				Bulk Gravity Solids (Gsb):				2.502			Tiber Additive.	Cellulose	
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	VCA	VCA _{drc}	
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt						
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)			
1	6.20	4660.5	135.9	121.1	2.236	2.404	5.42	7.0	18.8	62.9	31.5		
2	6.20	4637.6	136.3	121.0	2.231	2.404	5.42	7.2	19.0	62.1	31.6		
	6.20	4681.3	136.0	120.9	2.244	2.404	5.42	6.6	18.5	64.1	31.2		
Avg								6.9	18.7	63.0	31.4	41.8	
1	6.90	4689.4	135.8	121.2	2.250	2.380	6.13	5.4	18.9	71.1	31.0		
2	6.90	4705.4	136.2	121.2	2.257	2.380	6.13	5.2	18.6	72.2	30.8		
	6.90	4702.8	136.4	121.3	2.255	2.380	6.13	5.3	18.7	71.8	30.9		
Avg								5.3	18.7	71.7	30.9	41.8	
1	7.60	4752.1	136.5	121.4	2.275	2.357	6.84	3.5	18.6	81.4	30.3		
2	7.60	4727.8	135.8	120.8	2.275	2.357	6.84	3.5	18.6	81.4	30.3		
	7.60	4713.8	134.8	120.0	2.284	2.357	6.84	3.1	18.3	83.1	30.0		
Avg								3.3	18.5	82.0	30.2	41.8	
									Compactive	;			
-----------	---------	------------	-----------------	-----------	-----------------------------------	-------------	------------	-------	---------------------	----------	-----------------	-------------	--
Project	Name:	9-27							Device	Pine Gy	ratory Compac	ctor	
									Compactive)			
Mixture	ID:	12.5 mm	<u>n NMAS (</u>	Gravel SM	<u>A</u>				Effort:75 Gyrations				
											Percent Minus		
Binder Ty	/pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.636			#200	9.0	
Bindor G	rovitva	1 028			Effective Crevity Solida (Cas):			2 624	Filler			Marbla Duat	
Billuer G	avily.	1.020			Effective Gravity Solids (Gse): 2			2.034			Fiber Additive:		
					Buik Gravity Solius (GSD).			2.554	Fiber Additive: Ce			Cellulose	
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	VCA	VCAdrc	
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt						
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)			
1	6.00	4612.9	137.6	121.5	2.258	2.409	5.43	6.2	18.2	65.7	32.1		
2	6.00	4655.3	137.2	120.8	2.285	2.409	5.43	5.1	17.2	70.2	31.3		
	6.00	4629.5	137.1	121.1	2.270	2.409	5.43	5.8	17.8	67.5	31.8		
Avg								5.7	17.7	67.8	31.7	42.1	
1	6.50	4654.9	135.9	119.9	2.300	2.391	5.93	3.8	17.1	77.7	30.8		
2	6.50	4626.6	136.9	120.3	2.283	2.391	5.93	4.5	17.7	74.4	31.3		
	6.50	4644.7	137.0	120.2	2.293	2.391	5.93	4.1	17.4	76.2	31.1		
Avg								4.2	17.4	76.1	31.1	42.1	
1	7.00	4647.8	136.2	120.0	2.279	2.375	6.44	4.0	18.3	77.9	31.5		
2	7.00	4680.3	137.8	121.6	2.288	2.375	6.44	3.6	18.0	79.8	31.2		
	7.00	4579.1	135.1	118.8	2.279	2.375	6.44	4.0	18.3	77.9	31.5		
Avg								3.9	18.2	78.6	31.4	42.1	

Project I Mixture	Name: ID:	9-27 19.0 mm	NMAS G	ravel SMA	A				Compactive Device:Pine Gyratory Compactor Compactive Effort:75 Gyrations					
Binder Ty	pe:	PG 67 - 22	2	<u> </u>	Apparent (Gravity Sol	ids (Gsa):	2.638		<u> </u>	Percent Minus #200	8.0		
Binder Gravity:		1.029			Effective Gravity Solids (Gse): Bulk Gravity Solids (Gsb):			2.626 2.587	Filler Type Added:Mar Fiber Additive: Ce			Marble Dust Cellulose		
Sample Number	Asphalt Content	Dry Weight	Height @ Nintial	Height @ Ndesign	Bulk Gravity	Rice Gravity	Effective Asphalt	VTM	VMA	VFA	VCA	VCA _{drc}		
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	00.0			
1	6.20	4518.8	133.9	118.4	2.268	2.396	5.65	5.3	17.8	70.0	29.8			
2	6.20	4547.0	134.2	119.0	2.277	2.390	5.65	5.0	17.5	71.0	29.5			
Avg	0.20	4555.7	104.0	119.1	2.211	2.390	5.05	5.1	17.6	71.0	29.6	42.0		
1	6.70	4523.1	133.3	118.0	2.273	2.379	6.15	4.4	18.0	75.4	29.6			
2	6.70	4527.9	133.9	117.6	2.265	2.379	6.15	4.8	18.3	73.9	29.9			
	6.70	4540.0	134.2	118.6	2.283	2.379	6.15	4.0	17.7	77.2	29.4			
Avg								4.4	18.0	75.5	29.6	42.0		
1	7.20	4572.5	133.6	117.9	2.291	2.362	6.65	3.0	17.8	83.0	29.1			
2	7.20	4525.8	132.8	117.0	2.295	2.362	6.65	2.8	17.7	84.0	29.0			
	7.20	4552.2	133.4	117.8	2.285	2.362	6.65	3.3	18.0	81.9	29.3			
Avg								3.0	17.9	83.0	29.1	42.0		

Table A.33 Mix Design Summary for 19.0 mm NMAS Gravel SMA

Project	Project Name: 9-27							Device:Pine Gyratory Compactor					
Mixture	ID:	9.5 mm	Limeston	e SMA					Effort:75 Gyrations				
Binder Typ	pe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.744			Percent Minus #200 Filler Type	9.0	
Binder Gravity:		1.029			Effective Gravity Solids (Gse): Bulk Gravity Solids (Gsb):			2.744 2.710	Added:Marble Fiber Additive: Cellu			Marble Dust Cellulose	
Sample Asphalt I Number Content We (#) (%) (gr		Dry Weight (grams)	Height @ Nintial (mm)	Height @ Ndesign (mm)	Bulk Gravity (g/cm^3)	Rice Gravity (g/cm^3)	Effective Asphalt (%)	VTM (%)	VMA (%)	VFA (%)	VCA	VCA _{drc}	
1	6.10	4757.8	130.4	115.9	2.379	2.491	5.66	4.5	17.5	74.6	31.0		
2	6.10	4742.5	130.8	116.2	2.374	2.491	5.66	4.7	17.7	73.6	31.1		
3	6.10	4756.1	130.3	115.8	2.385	2.491	5.66	4.3	17.6	74.1	30.8		
AVG								4.5	17.6	74.1	31.0	38.4	
1	6.60	4776.3	128.0	114.6	2.405	2.472	6.16	2.7	17.1	84.1	30.2		
2	6.60	4767.4	128.0	114.5	2.405	2.472	6.16	2.7	17.1	84.2	30.2		
3	6.60	4771.6	127.8	114.6	2.407	2.472	6.16	2.6	17.1	84.2	30.2		
AVG								2.7	17.1	84.2	30.2	38.4	
1	7.10	4783.6	128.0	114.8	2.404	2.454	6.66	2.0	17.6	88.4	30.3		
2	7.10	4778.2	127.9	114.7	2.402	2.454	6.66	2.1	17.6	88.2	30.3		
3	7.10	4776.0	127.8	114.6	2.404	2.454	6.66	2.0	17.6	88.3	30.3		
AVG								2.1	17.6	88.3	30.3	38.4	

_

...

Table A.34Mix Design Summary for 9.5 mm NMAS Limestone SMA

Table A.35 Mix Design Summary for 12.5 mm NMAS Limestone SMA

								Compactive						
Project	Name:	9-27							Device	Pine G	yratory Comp	actor		
Mixturo	יםי	12.5 mm	Limonto						Compactive Effort: 75 Cyrations					
witklure	טו.	12.5 1111	Limesio						Ellon.75 Gyralions					
Binder Ty	vpe:	PG 67 - 22	2		Apparent (Gravity Sol	ids (Gsa):	2.750			Percent Minus #200	9.0		
Binder Gravity:		1.029			Effective Gravity Solids (Gse): Bulk Gravity Solids (Gsb):			2.738 2.705		Added:Marble Dus Fiber Additive: Cellulose				
Sample	Asphalt	Dry	Height	Height	Bulk	Rice	Effective	VTM	VMA	VFA	VCA	VCA _{drc}		
Number (#)	(%)	(grams)	(mm)	@ Ndesign (mm)	(g/cm^3)	(g/cm ³)	Asphalt (%)	(%)	(%)	(%)				
1	6.10	4694.4	133.3	118.4	2.306	2.486	5.67	7.2	19.9	63.7	32.1			
2	6.10	4727.7	133.3	118.3	2.317	2.486	5.67	6.8	19.6	65.2	31.8			
3	6.10	4712.1	133.4	118.2	2.324	2.486	5.67	6.5	19.8	64.4	31.6			
								6.9	19.8	64.4	31.9	38.9		
1	6.70	4693.0	132.5	117.6	2.330	2.464	6.27	5.5	19.6	72.2	31.5			
2	6.70	4679.0	131.4	116.7	2.315	2.464	6.27	6.1	19.6	72.2	31.9			
3	6.70	4715.3	133.2	118.8	2.314	2.464	6.27	6.1	19.6	72.2	31.9			
Avg								5.8	19.6	72.2	31.7	38.9		
1	7.20	4746.9	132.9	118.4	2.342	2.446	6.77	4.3	19.7	78.3	31.1			
2	7.20	4736.8	132.2	118.0	2.341	2.446	6.77	4.3	19.7	78.3	31.1			
3	7.20	4695.6	131.6	116.7	2.346	2.446	6.77	4.1	19.7	78.3	31.0			
								4.2	19.7	78.3	31.1	38.9		

Table A.36 Mix Design Summary for 19.0 mm NMAS Limestone SMA

						Compactive							
Project	Name:	9-27							Device: Pine Gyratory Compactor				
									Compactive				
Mixture	ID:	19.0 mm	Limestor	neSMA					Effort:75 Gyrations				
			_							Percent Minus	3		
Binder Ty	vpe:	PG 67 - 22	2		Apparent Gravity Solids (Gsa): 2.7			2.749			#200	0 8.0	
Binder Gravity:		1 020			Effective Gravity Solids (Gee):			2 7/6				: Marble Dust	
Billuer Gravity.		1.023		Ellective Gravity Solids (GSe). Bulk Gravity Solids (Gsb):				2.740			Fiber Additive	Cellulose	
					Built Gravi			2.7.1					
Sample	Asphalt	Drv	Heiaht	Height	Bulk	Rice	Effective	VTM	VMA	VFA	VCA	VCAdre	
Number	Content	Weight	@ Nintial	@ Ndesign	Gravity	Gravity	Asphalt				_		
(#)	(%)	(grams)	(mm)	(mm)	(g/cm^3)	(g/cm^3)	(%)	(%)	(%)	(%)	(%)	(%)	
1	5.60	4665.3	130.3	114.5	2.402	2.511	5.19	4.4	16.5	73.5	29.6		
2	5.60	4673.6	130.8	115.0	2.409	2.511	5.19	4.1	16.2	74.9	29.4		
3	5.60	4685.0	130.4	115.2	2.375	2.511	5.19	5.4	17.4	68.8	30.4		
Avg								4.6	16.7	72.4	29.8	40.3	
1	6.10	4671.3	129.7	114.2	2.407	2.492	5.69	3.4	16.7	79.5	29.5		
2	6.10	4671.1	128.8	114.3	2.415	2.492	5.69	3.1	16.5	81.1	29.3		
3	6.10	4673.1	130.6	115.8	2.389	2.492	5.69	4.2	17.4	76.1	30.0		
Avg								3.6	16.9	78.9	29.6	40.3	
1	6.60	4678.3	131.1	115.3	2.406	2.474	6.19	2.7	17.2	84.2	29.5		
2	6.60	4634.8	130.2	114.7	2.392	2.474	6.19	3.3	17.7	81.4	29.9		
3	6.60	4649.1	129.4	114.4	2.409	2.474	6.19	2.6	17.1	84.7	29.4		
Avg								2.9	17.3	83.4	29.6	40.3	

APPENDIX B

(LIFT THICKNESS VERSUS DENSITY DATA USING GYRATORY COMPACTOR)

NMAS	Gradation	Renlicate	t/NMAS	Thickness	Voids	Voids	Water
NINAS	Oraciación	replicate	UNIVIAO	mm	SSD %	Corelok %	Abs %
95	AR7	1	2.1	20.8	11 7	12.6	0.8
9.5	ARZ	2	2.1	20.3	10.2	11.0	0.0
9.5	ARZ	3	2.1	20.5	11 1	12.2	0.8
9.5	AR7	1	3.1	30.2	9.6	10.1	0.4
9.5	ARZ	2	3:1	29.9	9.5	10.2	0.4
9.5	ARZ	3	3:1	27.9	8.3	8.7	0.3
9.5	ARZ	1	4:1	38.1	5.9	6.2	0.1
9.5	ARZ	2	4:1	38.1	6.2	6.6	0.1
9.5	ARZ	3	4:1	37.9	5.7	5.8	0.1
9.5	ARZ	1	8:1	74.8	4.1	4.1	0.0
9.5	ARZ	2	8:1	75.2	4.2	4.3	0.0
9.5	ARZ	3	8:1	75.3	4.2	4.1	0.0
9.5	BRZ	1	2:1	20.9	12.4	15.2	4.7
9.5	BRZ	2	2:1	20.8	12.4	15.1	4.6
9.5	BRZ	3	2:1	21.0	12.8	14.9	4.7
9.5	BRZ	1	3:1	30.3	8.1	9.6	0.9
9.5	BRZ	2	3:1	30.2	8.5	10.4	1.3
9.5	BRZ	3	3:1	29.9	8.6	10.0	1.1
9.5	BRZ	1	4:1	40.0	6.4	7.7	0.4
9.5	BRZ	2	4:1	40.3	7.4	8.6	0.6
9.5	BRZ	3	4:1	39.8	6.7	7.6	0.4
9.5	BRZ	1	8:1	76.6	4.8	5.3	0.2
9.5	BRZ	2	8:1	77.0	4.6	5.0	0.2
9.5	BRZ	3	8:1	76.4	4.3	4.3	0.1
9.5	TRZ	1	2:1	21.2	14.8	15.9	3.2
9.5	TRZ	2	2:1	21.9	14.9	16.6	3.0
9.5	TRZ	3	2:1	21.1	14.0	15.5	3.1
9.5	TRZ	1	3:1	31.0	11.1	12.3	1.6
9.5	TRZ	2	3:1	31.0	11.4	12.6	1.4
9.5	TRZ	3	3:1	31.0	11.3	12.4	1.4
9.5	TRZ	1	4:1	40.2	8.6	9.2	0.6
9.5	TRZ	2	4:1	41.0	9.9	10.9	0.9
9.5	TRZ	3	4:1	40.4	8.7	9.8	1.2
9.5	TRZ	1	8:1	75.7	4.6	5.1	0.2
9.5	TRZ	2	8:1	75.8	4.7	5.0	0.2
9.5	TRZ	3	8:1	75.4	4.3	5.1	0.2
9.5	SMA	1	2:1	21.7	11.7	18.7	7.2
9.5	SMA	2	2:1	22.0	11.0	18.4	6.8
9.5	SMA	3	2:1	22.0	10.9	17.6	6.0
9.5	SMA	1	3:1	30.8	10.0	13.2	4.3
9.5	SMA	2	3:1	30.8	10.5	14.3	5.5
9.5	SMA	3	3:1	31.0	10.2	15.0	5.4
9.5	SMA	1	4:1	39.4	9.2	11.9	3.4
9.5	SMA	2	4:1	39.2	8.6	10.7	2.6
9.5	SMA	3	4:1	39.7	10.1	12.2	3.8
9.5	SMA	1	8:1	78.2	5.0	6.0	0.8
9.5	SMA	2	8:1	77.7	4.7	5.7	0.7
9.5	SMA	3	8:1	77.3	4.6	5.5	0.6

Table B.1 Data for T/NMAS Versus Air Voids for Granite Mixes

NMAS	Gradation	Replicate	t/NMAS	Thickness,	Voids	Voids	Water
				mm	SSD, %	Corelok, %	Abs., %
12.5	SMA	1	2:1	26.6	10.1	18.6	6.0
12.5	SMA	2	2:1	26.3	9.1	16.4	5.0
12.5	SMA	3	2:1	27.1	8.5	17.8	4.7
12.5	SMA	1	3:1	38.7	8.4	15.6	4.8
12.5	SMA	2	3:1	40.2	8.5	14.5	5.5
12.5	SMA	3	3:1	38.5	8.9	15.1	5.0
12.5	SMA	1	4:1	52.0	8.3	12.6	4.2
12.5	SMA	2	4:1	52.7	7.8	13.1	4.0
12.5	SMA	3	4:1	52.3	7.9	13.0	4.0
12.5	SMA	1	6:1	75.9	5.5	7.6	1.5
12.5	SMA	2	6:1	76.3	6.4	8.3	1.8
12.5	SMA	3	6:1	76.7	6.8	9.4	2.0
19	SMA	1	2:1	39.7	6.5	13.8	3.2
19	SMA	2	2:1	39.3	7.0	13.4	3.8
19	SMA	3	2:1	38.6	6.8	11.8	3.3
19	SMA	1	3:1	59.1	6.8	9.9	2.3
19	SMA	2	3:1	58.8	5.6	11.2	1.6
19	SMA	3	3:1	58.5	5.9	11.6	2.0
19	SMA	1	4:1	77.4	4.7	7.7	0.8
19	SMA	2	4:1	77.8	4.8	7.5	1.0
19	SMA	3	4:1	77.7	4.8	7.3	0.6
19	ARZ	1	2:1	39.6	6.1	6.6	0.2
19	ARZ	2	2:1	39.8	7.2	7.9	0.6
19	ARZ	3	2:1	39.4	5.6	6.1	0.3
19	ARZ	1	3:1	58.5	4.3	4.7	0.3
19	ARZ	2	3:1	58.3	4.4	4.9	0.1
19	ARZ	3	3:1	58.2	4.1	4.3	0.1
19	ARZ	1	4:1	77.6	4.4	4.7	0.2
19	ARZ	2	4:1	77.2	3.9	4.1	0.2
19	ARZ	3	4:1	76.0	4.1	4.4	0.2
19	BRZ	1	2:1	40.6	8.1	10.8	2.6
19	BRZ	2	2:1	41.0	8.8	11.9	2.8
19	BRZ	3	2:1	40.5	8.8	11.2	2.7
19	BRZ	1	3:1	59.0	6.9	8.5	1.4
19	BRZ	2	3:1	59.1	6.2	8.2	1.2
19	BRZ	3	3:1	58.9	6.2	8.0	1.1
19	BRZ	1	4:1	77.1	5.2	5.8	0.8
19	BRZ	2	4:1	77.8	5.5	6.5	1.0
19	BRZ	3	4:1	77.6	5.5	6.3	0.7

Table B.1 (Continued) Data for T/NMAS Versus Air Voids for Granite Mixes

NMAS	Gradation	Replicate	t/NMAS	Thickness,	Voids	Voids	Water
				mm	SSD, %	Corelok, %	Abs., %
19	TRZ	1	2:1	40.0	6.6	7.7	1.0
19	TRZ	2	2:1	39.4	6.2	7.2	0.7
19	TRZ	3	2:1	39.8	6.8	7.9	0.9
19	TRZ	1	3:1	58.8	4.6	5.4	0.5
19	TRZ	2	3:1	58.6	5.1	5.9	0.7
19	TRZ	3	3:1	58.5	5.0	5.6	0.7
19	TRZ	1	4:1	77.7	4.4	4.9	0.8
19	TRZ	2	4:1	77.1	3.9	4.6	0.3
19	TRZ	3	4:1	77.2	4.1	4.7	0.4
37.5	ARZ	1	2:1	73.4	4.1	4.9	0.8
37.5	ARZ	2	2:1	73.6	4.8	5.9	1.0
37.5	ARZ	3	2:1	73.9	5.0	6.0	0.7
37.5	ARZ	1	2.5:1	93.5	4.6	5.4	0.9
37.5	ARZ	2	2.5:1	93.0	4.1	5.2	0.6
37.5	ARZ	3	2.5:1	93.8	4.4	5.1	0.8
37.5	ARZ	1	3:1	113.4	4.1	5.0	0.6
37.5	ARZ	2	3:1	114.0	3.9	4.7	0.8
37.5	ARZ	3	3:1	111.2	4.0	4.7	0.7
37.5	BRZ	1	2:1	77.6	6.0	9.3	2.3
37.5	BRZ	2	2:1	76.6	6.1	9.0	2.7
37.5	BRZ	3	2:1	78.0	5.2	9.1	2.3
37.5	BRZ	1	2.5:1	95.1	5.5	7.0	2.3
37.5	BRZ	2	2.5:1	94.7	4.5	6.3	1.6
37.5	BRZ	3	2.5:1	94.9	5.2	6.7	1.7
37.5	BRZ	1	3:1	112.1	5.0	5.7	1.7
37.5	BRZ	2	3:1	112.1	4.5	5.6	1.2
37.5	BRZ	3	3:1	112.6	4.5	5.5	1.2
37.5	TRZ	1	2:1	74.8	5.7	7.4	1.8
37.5	TRZ	2	2:1	75.7	5.9	8.3	2.0
37.5	TRZ	3	2:1	74.5	6.1	7.6	1.5
37.5	TRZ	1	2.5:1	93.8	4.0	6.3	1.1
37.5	TRZ	2	2.5:1	92.6	5.0	5.1	1.5
37.5	TRZ	3	2.5:1	93.0	3.8	4.9	0.8
37.5	TRZ	1	3:1	113.4	4.0	5.1	1.0
37.5	TRZ	2	3:1	112.1	4.0	4.9	1.0
37.5	TRZ	3	3:1	111.2	3.9	3.9	1.0

Table B.1 (Continued) Data for T/NMAS Versus Air Voids for Granite Mixes

NMAS	Gradation	Replicate	t/NMAS	Thickness,	Voids	Voids	Water
				mm	SSD, %	Corelok, %	Abs., %
9.5	ARZ	1	2:1	21.2	13.3	14.0	1.2
9.5	ARZ	2	2:1	20.7	12.3	12.9	1.1
9.5	ARZ	3	2:1	20.7	11.2	12.2	1.5
9.5	ARZ	1	3:1	29.6	8.4	8.9	0.6
9.5	ARZ	2	3:1	29.2	7.6	8.0	0.4
9.5	ARZ	3	3:1	29.5	8.0	8.2	0.4
9.5	ARZ	1	4:1	38.3	6.2	6.7	0.2
9.5	ARZ	2	4:1	38.3	6.4	6.8	0.2
9.5	ARZ	3	4:1	37.9	6.4	6.7	0.2
9.5	ARZ	1	8:1	77.9	3.9	4.4	0.1
9.5	ARZ	2	8:1	75.1	3.6	4.0	0.1
9.5	ARZ	3	8:1	75.2	3.9	4.1	0.1
9.5	BRZ	1	2:1	21.4	13.0	15.3	6.8
9.5	BRZ	2	2:1	21.7	13.5	16.3	6.6
9.5	BRZ	3	2:1	21.6	12.8	15.6	5.7
9.5	BRZ	1	3:1	30.7	10.5	12.0	2.7
9.5	BRZ	2	3:1	30.1	9.7	11.7	2.3
9.5	BRZ	3	3:1	31.0	10.1	12.1	2.7
9.5	BRZ	1	4:1	39.5	7.8	9.3	1.0
9.5	BRZ	2	4:1	38.8	7.7	9.4	0.6
9.5	BRZ	3	4:1	39.2	7.1	8.5	0.9
9.5	BRZ	1	8:1	76.7	4.6	5.6	0.2
9.5	BRZ	2	8:1	77.3	5.9	7.1	0.3
9.5	BRZ	3	8:1	76.4	4.9	5.8	0.3
9.5	TRZ	1	2:1	22.0	15.5	18.3	5.2
9.5	TRZ	2	2:1	21.8	15.0	17.4	4.6
9.5	TRZ	3	2:1	22.0	15.7	18.2	5.1
9.5	TRZ	1	3:1	30.7	10.4	12.1	1.5
9.5	TRZ	2	3:1	31.0	11.5	13.3	2.4
9.5	TRZ	3	3:1	30.9	10.9	12.3	2.0
9.5	TRZ	1	4:1	40.0	8.7	9.8	0.9
9.5	TRZ	2	4:1	39.6	8.6	9.8	1.0
9.5	TRZ	3	4:1	39.7	8.8	9.9	0.9
9.5	TRZ	1	8:1	78.2	4.4	5.2	0.2
9.5	TRZ	2	8:1	77.7	4.4	6.1	0.2
9.5	TRZ	3	8:1	77.6	4.1	4.7	0.2
9.5	SMA	1	2:1	20.3	10.7	17.6	6.6
9.5	SMA	2	2:1	21.6	11.3	17.6	6.6
9.5	SMA	3	2:1	21.7	10.5	16.6	6.0
9.5	SMA	1	3:1	29.7	9.7	12.9	4.0
9.5	SMA	2	3:1	30.0	9.6	12.7	4.4
9.5	SMA	3	3:1	29.8	10.9	14.0	5.0
9.5	SMA	1	4:1	38.9	8.3	10.5	2.2
9.5	SMA	2	4:1	37.4	8.8	11.4	3.1
9.5	SMA	3	4:1	39.2	8.1	10.1	2.2
9.5	SMA	1	8:1	76.8	5.2	6.4	0.9
9.5	SMA	2	8:1	77.5	5.1	6.3	0.6
9.5	SMA	3	8:1	77.4	5.8	6.8	0.7

Table B.2 Data for T/NMAS Versus Air Voids for Limestone Mixes

NMAS	Gradation	Replicate	t/NMAS	Thickness,	Voids	Voids	Water
				mm	SSD, %	Corelok, %	Abs., %
12.5	SMA	1	2:1	25.4	10.2	17.4	6.6
12.5	SMA	2	2:1	25.6	10.6	16.4	6.8
12.5	SMA	3	2:1	25.1	11.8	16.8	7.1
12.5	SMA	1	3:1	36.8	8.3	11.2	3.2
12.5	SMA	2	3:1	37.7	8.7	11.1	4.6
12.5	SMA	3	3:1	37.5	7.4	10.1	3.4
12.5	SMA	1	4:1	48.3	8.0	10.2	2.8
12.5	SMA	2	4:1	49.8	6.8	8.7	2.1
12.5	SMA	3	4:1	49.2	6.4	8.3	1.7
12.5	SMA	1	6:1	78.0	6.6	7.5	0.9
12.5	SMA	2	6:1	77.0	6.7	8.0	1.3
12.5	SMA	3	6:1	76.2	6.4	7.4	1.1
19	SMA	1	2:1	41.0	7.7	16.4	4.9
19	SMA	2	2:1	38.0	8.1	16.2	4.9
19	SMA	3	2:1	36.6	8.2	15.9	3.9
19	SMA	1	3:1	58.8	6.4	9.0	2.6
19	SMA	2	3:1	59.4	7.1	10.2	2.9
19	SMA	3	3:1	58.8	6.4	9.3	2.4
19	SMA	1	4:1	77.5	4.6	6.5	1.3
19	SMA	2	4:1	77.8	4.5	6.7	1.2
19	SMA	3	4:1	78.3	5.4	7.3	1.6
19	ARZ	1	2:1	38.6	9.6	10.5	1.3
19	ARZ	2	2:1	40.0	9.1	9.9	0.7
19	ARZ	3	2:1	40.5	9.6	10.4	0.8
19	ARZ	1	3:1	56.3	6.8	7.4	0.8
19	ARZ	2	3:1	56.6	5.4	5.8	0.2
19	ARZ	3	3:1	56.6	4.8	5.2	0.2
19	ARZ	1	4:1	75.0	3.9	4.2	0.1
19	ARZ	2	4:1	75.4	4.2	4.7	0.2
19	ARZ	3	4:1	75.2	3.9	4.2	0.2
19	BRZ	1	2:1	40.6	8.3	10.5	3.1
19	BRZ	2	2:1	40.1	9.0	10.9	3.9
19	BRZ	3	2:1	39.6	9.5	11.6	2.7
19	BRZ	1	3:1	57.9	5.6	6.6	1.2
19	BRZ	2	3:1	56.3	5.1	6.3	0.6
19	BRZ	3	3:1	57.2	5.1	6.1	0.7
19	BRZ		4:1	75.6	4.0	5.3	0.5
19	BRZ	2	4:1	75.4	3.8	4.8	0.4
19	BRZ	3	4:1	76.1	4.2	5.2	0.6

Table B.2 (Continued) Data for T/NMAS Versus Air Voids for Limestone Mixes

NMAS	Gradation	Replicate	t/NMAS	Thickness,	Voids	Voids	Water
				mm	SSD, %	Corelok, %	Abs., %
19	TRZ	1	2:1	38.9	10.1	12.7	4.0
19	TRZ	2	2:1	39.3	10.7	13.6	5.0
19	TRZ	3	2:1	38.7	11.0	13.8	4.5
19	TRZ	1	3:1	56.6	6.8	8.0	1.2
19	TRZ	2	3:1	56.5	7.0	8.5	1.5
19	TRZ	3	3:1	56.4	6.3	7.6	1.3
19	TRZ	1	4:1	75.9	5.3	6.4	1.1
19	TRZ	2	4:1	76.0	4.5	5.6	0.7
19	TRZ	3	4:1	75.8	4.5	5.1	0.6
37.5	ARZ	1	2:1	72.0	4.6	4.8	0.6
37.5	ARZ	2	2:1	72.5	4.5	5.0	0.8
37.5	ARZ	3	2:1	72.4	4.5	4.9	0.8
37.5	ARZ	1	2.5:1	91.5	4.6	4.2	0.7
37.5	ARZ	2	2.5:1	91.8	4.3	4.3	0.9
37.5	ARZ	3	2.5:1	91.4	4.5	4.3	0.7
37.5	ARZ	1	3:1	112.6	4.5	4.3	0.6
37.5	ARZ	2	3:1	112.9	4.4	4.4	0.7
37.5	ARZ	3	3:1	112.7	4.3	4.4	0.7
37.5	BRZ	1	2:1	76.2	4.3	8.8	1.5
37.5	BRZ	2	2:1	74.9	5.1	7.5	1.5
37.5	BRZ	3	2:1	74.1	4.7	7.1	1.6
37.5	BRZ	1	2.5:1	92.6	4.6	6.0	1.4
37.5	BRZ	2	2.5:1	93.3	4.3	6.8	1.3
37.5	BRZ	3	2.5:1	93.1	4.5	6.1	1.2
37.5	BRZ	1	3:1	112.2	4.9	6.2	1.5
37.5	BRZ	2	3:1	113.4	4.8	6.8	1.4
37.5	BRZ	3	3:1	111.8	4.6	5.8	1.3
37.5	TRZ	1	2:1	74.1	5.1	6.4	1.3
37.5	TRZ	2	2:1	73.7	4.4	5.6	1.2
37.5	TRZ	3	2:1	72.7	4.6	5.4	1.1
37.5	TRZ	1	2.5:1	92.5	4.2	5.1	1.2
37.5	TRZ	2	2.5:1	91.1	4.0	4.7	1.1
37.5	TRZ	3	2.5:1	92.6	4.0	4.9	1.1
37.5	TRZ	1	3:1	112.6	4.0	5.3	1.2
37.5	TRZ	2	3:1	111.4	3.6	3.9	0.7
37.5	TRZ	3	3:1	114.7	4.1	5.9	1.2

Table B.2 (Continued) Data for T/NMAS Versus Air Voids for Limestone Mixes

NMAS	Gradation	Replicate	t/NMAS	Thickness,	Voids	Voids	Water
				mm	SSD, %	Corelok, %	Abs., %
9.5	ARZ	1	2:1	20.2	12.1	13.0	0.6
9.5	ARZ	2	2:1	20.6	11.5	12.4	0.7
9.5	ARZ	3	2:1	20.6	11.0	11.6	0.7
9.5	ARZ	1	3:1	29.1	7.9	8.3	0.4
9.5	ARZ	2	3:1	29.1	7.7	8.1	0.3
9.5	ARZ	3	3:1	29.2	7.9	8.1	0.4
9.5	ARZ	1	4:1	37.9	5.9	6.3	0.2
9.5	ARZ	2	4:1	37.5	5.9	6.2	0.2
9.5	ARZ	3	4:1	37.5	5.4	5.8	0.1
9.5	ARZ	1	8:1	74.0	3.8	3.9	0.1
9.5	ARZ	2	8:1	74.0	4.4	4.4	0.1
9.5	ARZ	3	8:1	73.8	3.9	3.8	0.1
9.5	BRZ	1	2:1	21.3	12.6	18.7	4.1
9.5	BRZ	2	2:1	21.1	14.1	16.9	4.5
9.5	BRZ	3	2:1	21.5	11.7	18.9	3.6
9.5	BRZ	1	3:1	29.9	8.4	9.4	1.1
9.5	BRZ	2	3:1	29.9	8.6	10.2	1.6
9.5	BRZ	3	3:1	29.2	8.5	9.6	1.2
9.5	BRZ	1	4:1	38.5	6.4	7.5	0.5
9.5	BRZ	2	4:1	39.1	6.9	8.3	0.6
9.5	BRZ	3	4:1	38.6	6.5	7.4	0.6
9.5	BRZ	1	8:1	74.0	3.4	4.3	0.1
9.5	BRZ	2	8:1	74.2	3.4	4.4	0.2
9.5	BRZ	3	8:1	74.0	3.2	4.2	0.1
9.5	TRZ	1	2:1	20.7	11.9	13.4	1.6
9.5	TRZ	2	2:1	20.9	12.4	13.7	2.1
9.5	TRZ	3	2:1	20.9	11.7	13.1	1.5
9.5	TRZ	1	3:1	30.0	8.6	8.7	0.6
9.5	TRZ	2	3:1	30.0	8.5	9.3	0.8
9.5	TRZ	3	3:1	29.6	7.6	8.2	0.4
9.5	TRZ	1	4:1	38.9	6.0	6.5	0.2
9.5	TRZ	2	4:1	38.9	6.5	7.1	0.3
9.5	TRZ	3	4:1	38.9	6.3	7.4	0.2
9.5	TRZ	1	8:1	76.2	3.8	4.1	0.1
9.5	TRZ	2	8:1	76.7	4.3	4.9	0.1
9.5	TRZ	3	8:1	76.3	4.2	4.4	0.1
9.5	SMA	1	2:1	20.1	10.6	18.7	5.7
9.5	SMA	2	2:1	22.0	11.0	19.2	6.4
9.5	SMA	3	2:1	21.1	10.5	20.3	5.8
9.5	SMA	1	3:1	30.0	10.2	14.6	4.8
9.5	SMA	2	3:1	30.4	10.9	15.3	5.5
9.5	SMA	3	3:1	30.4	10.2	15.1	5.1
9.5	SMA	1	4:1	38.8	9.2	12.5	3.7
9.5	SMA	2	4:1	38.1	9.6	12.3	3.4
9.5	SMA	3	4:1	38.0	9.2	12.3	3.5
9.5	SMA	1	8:1	77.8	6.1	7.4	1.1
9.5	SMA	2	8:1	77.2	5.9	6.7	1.0
9.5	SMA	3	8:1	77.3	5.3	6.3	0.7

Table B.3 Data for T/NMAS Versus Air Voids for Gravel Mixes

NMAS	Gradation	Replicate	t/NMAS	Thickness,	Voids	Voids	Water
				mm	SSD, %	Corelok, %	Abs., %
12.5	SMA	1	2:1	27.5	8.0	17.8	4.9
12.5	SMA	2	2:1	27.0	8.5	18.3	5.2
12.5	SMA	3	2:1	27.2	8.2	16.8	4.8
12.5	SMA	1	3:1	38.9	7.8	13.1	3.8
12.5	SMA	2	3:1	38.1	8.5	13.6	3.9
12.5	SMA	3	3:1	38.4	7.9	14.2	4.5
12.5	SMA	1	4:1	52.8	7.0	10.6	3.2
12.5	SMA	2	4:1	52.4	7.8	11.5	3.9
12.5	SMA	3	4:1	53.0	8.4	12.6	4.2
12.5	SMA	1	6:1	76.7	6.0	7.7	1.6
12.5	SMA	2	6:1	77.1	5.6	7.5	1.6
12.5	SMA	3	6:1	76.9	6.0	7.9	1.9
19	SMA	1	2:1	38.9	6.6	12.3	3.0
19	SMA	2	2:1	40.2	7.3	14.1	4.0
19	SMA	3	2:1	38.5	7.1	13.3	4.5
19	SMA	1	3:1	57.1	5.1	8.2	1.7
19	SMA	2	3:1	57.3	5.6	8.0	1.4
19	SMA	3	3:1	59.0	6.4	7.8	3.1
19	SMA	1	4:1	77.6	5.6	8.2	2.2
19	SMA	2	4:1	77.8	4.8	7.7	1.7
19	SMA	3	4:1	77.7	6.0	8.5	1.6
19	ARZ	1	2:1	39.7	7.6	8.2	0.6
19	ARZ	2	2:1	39.0	6.8	7.5	0.2
19	ARZ	3	2:1	38.0	7.9	8.9	1.3
19	ARZ	1	3:1	57.1	4.4	4.9	0.2
19	ARZ	2	3:1	57.2	4.8	5.1	0.1
19	ARZ	3	3:1	56.9	4.3	4.6	0.1
19	ARZ	1	4:1	75.1	3.6	3.9	0.1
19	ARZ	2	4:1	75.5	3.6	3.9	0.1
19	ARZ	3	4:1	75.9	4.0	4.3	0.1
19	BRZ	1	2:1	41.2	8.1	10.8	2.8
19	BRZ	2	2:1	40.3	8.0	9.3	2.4
19	BRZ	3	2:1	40.3	7.7	9.7	2.5
19	BRZ	1	3:1	57.7	4.2	5.2	0.6
19	BRZ	2	3:1	58.1	4.6	5.7	0.6
19	BRZ	3	3:1	58.4	4.6	5.8	0.6
19	BRZ	1	4:1	75.5	2.9	3.8	0.2
19	BRZ	2	4:1	75.5	3.3	4.1	0.3
19	BRZ	3	4:1	76.2	3.3	4.0	0.3

Table B.3 (Continued) Data for T/NMAS Versus Air Voids for Gravel Mixes

NMAS	Gradation	Replicate	t/NMAS	Thickness,	Voids	Voids	Water
				mm	SSD, %	Corelok, %	Abs., %
19	TRZ	1	2:1	39.7	7.9	9.4	2.3
19	TRZ	2	2:1	39.9	7.2	9.5	1.5
19	TRZ	3	2:1	39.5	8.3	10.4	2.5
19	TRZ	1	3:1	57.4	5.0	5.7	0.6
19	TRZ	2	3:1	57.3	4.3	4.9	0.4
19	TRZ	3	3:1	57.0	4.0	4.5	0.4
19	TRZ	1	4:1	76.1	3.1	3.4	0.3
19	TRZ	2	4:1	75.9	3.4	3.8	0.3
19	TRZ	3	4:1	75.8	3.2	2.9	0.2
37.5	ARZ	1	2:1	72.0	4.4	5.0	0.5
37.5	ARZ	2	2:1	72.3	5.3	5.8	0.5
37.5	ARZ	3	2:1	72.0	4.4	4.8	0.6
37.5	ARZ	1	2.5:1	90.8	3.6	3.6	0.2
37.5	ARZ	2	2.5:1	91.0	4.2	4.6	0.4
37.5	ARZ	3	2.5:1	91.4	4.8	5.1	0.9
37.5	ARZ	1	3:1	110.6	3.5	3.7	0.2
37.5	ARZ	2	3:1	112.1	5.2	5.5	0.8
37.5	ARZ	3	3:1	111.0	3.8	4.8	0.3
37.5	BRZ	1	2:1	74.1	5.0	7.3	1.9
37.5	BRZ	2	2:1	73.6	5.3	7.0	2.0
37.5	BRZ	3	2:1	73.8	5.0	7.5	2.2
37.5	BRZ	1	2.5:1	93.4	4.7	7.0	1.6
37.5	BRZ	2	2.5:1	92.0	4.6	5.7	1.9
37.5	BRZ	3	2.5:1	93.5	4.6	7.0	1.8
37.5	BRZ	1	3:1	111.8	4.8	5.8	1.9
37.5	BRZ	2	3:1	111.7	4.4	5.6	1.2
37.5	BRZ	3	3:1	111.4	4.1	5.2	1.0
37.5	TRZ	1	2:1	73.7	4.2	5.4	1.2
37.5	TRZ	2	2:1	73.1	3.7	4.8	0.7
37.5	TRZ	3	2:1	73.8	4.5	5.4	1.3
37.5	TRZ	1	2.5:1	91.6	3.4	4.0	0.9
37.5	TRZ	2	2.5:1	92.7	4.0	4.6	1.0
37.5	TRZ	3	2.5:1	92.2	3.4	4.2	0.8
37.5	TRZ	1	3:1	112.0	3.5	4.4	0.8
37.5	TRZ	2	3:1	112.3	3.5	4.3	0.7
37.5	TRZ	3	3:1	110.1	3.2	3.7	0.6

Table B.3 (Continued) Data for T/NMAS Versus Air Voids for Gravel Mixes

APPENDIX C

(LIFT THICKNESS VERSUS DENSITY DATA USING VIBRATORY COMPACTOR)

NMAS	Gradation	Compact.	Replicate	Target	Thickness,	Actual	Voids	Voids	Water
		Time, sec.		t/NMAS	mm	t/NMAS	SSD, %	Corelok, %	Abs., %
9.5	ARZ	30	1	2.0	19.3	2.0	6.4	6.8	0.2
9.5	ARZ	30	2	2.0	19.5	2.0	6.2	6.1	0.2
9.5	ARZ	60	1	2.0	18.7	2.0	4.8	4.9	0.3
9.5	ARZ	60	2	2.0	18.3	1.9	3.3	4.5	0.2
9.5	ARZ	90	1	2.0	18.3	1.9	4.2	4.3	0.3
9.5	ARZ	90	2	2.0	18.7	2.0	3.4	4.8	0.3
9.5	ARZ	30	1	3.0	28.6	3.0	5.1	6.1	0.2
9.5	ARZ	30	2	3.0	28.9	3.0	5.0	6.2	0.2
9.5	ARZ	60	1	3.0	28.7	3.0	5.4	5.1	0.1
9.5	ARZ	60	2	3.0	28.1	3.0	5.2	5.2	0.2
9.5	ARZ	90	1	3.0	29.2	3.1	4.7	3.7	0.2
9.5	ARZ	90	2	3.0	28.4	3.0	2.8	3.3	0.1
9.5	ARZ	30	1	4.0	38.6	4.1	5.4	5.0	0.2
9.5	ARZ	30	2	4.0	38.7	4.1	5.7	5.4	0.2
9.5	ARZ	60	1	4.0	38.4	4.0	4.7	4.3	0.1
9.5	ARZ	60	2	4.0	37.9	4.0	3.5	4.1	0.2
9.5	ARZ	90	1	4.0	37.3	3.9	3.6	3.1	0.1
9.5	ARZ	90	2	4.0	37.9	4.0	3.9	3.7	0.1
9.5	BRZ	30	1	2.0	20.8	2.2	9.5	11.2	2.0
9.5	BRZ	30	2	2.0	20.6	2.2	8.7	10.8	1.8
9.5	BRZ	60	1	2.0	20.5	2.2	7.1	8.2	1.0
9.5	BRZ	60	2	2.0	20.0	2.1	5.8	8.2	0.8
9.5	BRZ	90	1	2.0	20.0	2.1	5.3	6.4	0.6
9.5	BRZ	90	2	2.0	19.9	2.1	6.0	7.1	0.6
9.5	BRZ	30	1	3.0	30.3	3.2	7.9	9.9	1.8
9.5	BRZ	30	2	3.0	30.5	3.2	9.1	10.4	1.6
9.5	BRZ	60	1	3.0	29.8	3.1	8.0	9.0	0.9
9.5	BRZ	60	2	3.0	29.4	3.1	7.0	8.7	0.6
9.5	BRZ	90	1	3.0	29.1	3.1	6.1	6.8	0.4
9.5	BRZ	90	2	3.0	29.4	3.1	6.7	7.4	0.4
9.5	BRZ	30	1	4.0	40.8	4.3	8.7	9.4	1.8
9.5	BRZ	30	2	4.0	40.5	4.3	8.3	9.0	1.1
9.5	BRZ	60	1	4.0	40.6	4.3	8.2	8.3	0.9
9.5	BRZ	60	2	4.0	40.1	4.2	7.2	7.9	0.8
9.5	BRZ	90	1	4.0	39.2	4.1	5.7	6.2	0.3
9.5	BRZ	90	2	4.0	39.4	4.1	6.3	6.8	0.3

Table C.1 Data for T/NMAS Versus Air Voids for Granite Mixes

NMAS	Gradation	Compact.	Replicate	Target	Thickness,	Actual	Voids	Voids	Water
		Time, sec.		t/NMAS	mm	t/NMAS	SSD, %	Corelok, %	Abs., %
9.5	SMA	30	1	2.0	19.3	2.0	7.1	10.5	1.9
9.5	SMA	30	2	2.0	18.8	2.0	6.4	11.0	2.0
9.5	SMA	60	1	2.0	19.3	2.0	6.8	9.4	2.1
9.5	SMA	60	2	2.0	19.0	2.0	6.5	9.1	2.1
9.5	SMA	90	1	2.0	18.2	1.9	4.9	5.8	0.9
9.5	SMA	90	2	2.0	18.9	2.0	5.4	6.3	0.9
9.5	SMA	30	1	3.0	30.3	3.2	8.7	10.5	2.6
9.5	SMA	30	2	3.0	30.4	3.2	8.4	10.3	2.4
9.5	SMA	60	1	3.0	29.0	3.0	5.5	7.0	1.5
9.5	SMA	60	2	3.0	29.0	3.0	5.4	6.9	1.5
9.5	SMA	90	1	3.0	28.0	2.9	3.0	4.3	0.3
9.5	SMA	90	2	3.0	28.2	3.0	3.8	4.7	0.6
9.5	SMA	30	1	4.0	40.7	4.3	8.3	9.9	1.8
9.5	SMA	30	2	4.0	40.9	4.3	9.0	10.5	1.9
9.5	SMA	60	1	4.0	39.1	4.1	5.0	5.7	0.5
9.5	SMA	60	2	4.0	39.5	4.2	5.6	6.3	0.6
9.5	SMA	90	1	4.0	38.0	4.0	3.8	4.5	0.6
9.5	SMA	90	2	4.0	38.2	4.0	3.6	4.4	0.5
12.5	SMA	30	1	2.0	26.6	2.1	7.4	12.4	3.2
12.5	SMA	30	2	2.0	26.3	2.1	7.5	12.6	3.2
12.5	SMA	60	1	2.0	25.2	2.0	6.0	9.2	1.4
12.5	SMA	60	2	2.0	25.3	2.0	5.4	8.8	1.3
12.5	SMA	90	1	2.0	24.4	2.0	5.3	7.3	1.0
12.5	SMA	90	2	2.0	24.4	2.0	4.6	6.5	0.6
12.5	SMA	30	1	3.0	39.4	3.1	7.6	10.7	2.2
12.5	SMA	30	2	3.0	38.8	3.1	7.8	10.9	2.9
12.5	SMA	60	1	3.0	37.9	3.0	4.6	7.3	0.6
12.5	SMA	60	2	3.0	37.2	3.0	4.5	7.2	0.5
12.5	SMA	90	1	3.0	36.9	3.0	3.9	4.7	0.5
12.5	SMA	90	2	3.0	37.1	3.0	4.6	5.4	0.6
12.5	SMA	30	1	4.0	51.0	4.1	7.8	11.0	2.6
12.5	SMA	30	2	4.0	50.9	4.1	7.9	10.5	1.8
12.5	SMA	60	1	4.0	51.7	4.1	6.7	8.8	1.3
12.5	SMA	60	2	4.0	49.3	3.9	7.8	8.6	2.6
12.5	SMA	90	1	4.0	51.1	4.1	6.4	7.6	1.3
12.5	SMA	90	2	4.0	51.8	4.1	7.1	8.3	1.3

Table C.1 (Continued) Data for T/NMAS Versus Air Voids for Granite Mixes

NMAS	Gradation	Compact.	Replicate	Target	Thickness,	Actual	Voids	Voids	Water
		Time, sec.		t/NMAS	mm	t/NMAS	SSD, %	Corelok, %	Abs., %
19	ARZ	30	1	2.0	40.4	2.1	7.7	9.3	3.0
19	ARZ	30	2	2.0	40.1	2.1	8.6	8.9	1.4
19	ARZ	60	1	2.0	39.6	2.1	7.0	7.1	1.2
19	ARZ	60	2	2.0	39.5	2.1	7.3	7.4	1.2
19	ARZ	90	1	2.0	39.1	2.1	5.9	5.7	0.9
19	ARZ	90	2	2.0	38.8	2.0	5.1	5.1	0.3
19	ARZ	30	1	3.0	59.4	3.1	6.4	6.6	0.6
19	ARZ	30	2	3.0	59.6	3.1	7.0	7.2	0.6
19	ARZ	60	1	3.0	59.2	3.1	5.8	6.0	1.0
19	ARZ	60	2	3.0	58.2	3.1	4.5	5.5	0.7
19	ARZ	90	1	3.0	58.5	3.1	5.4	5.0	0.6
19	ARZ	90	2	3.0	57.8	3.0	4.8	4.6	0.7
19	ARZ	30	1	4.0	76.9	4.0	8.0	7.6	1.5
19	ARZ	30	2	4.0	78.3	4.1	8.7	8.3	1.5
19	ARZ	60	1	4.0	76.6	4.0	6.1	6.1	1.1
19	ARZ	60	2	4.0	76.3	4.0	6.7	6.5	0.9
19	ARZ	90	1	4.0	74.1	3.9	3.7	3.9	0.4
19	ARZ	90	2	4.0	74.3	3.9	4.0	5.1	0.5
19	BRZ	30	1	2.0	41.0	2.2	8.2	10.6	1.8
19	BRZ	30	2	2.0	40.8	2.1	7.6	10.3	1.7
19	BRZ	60	1	2.0	40.7	2.1	7.7	9.7	1.2
19	BRZ	60	2	2.0	40.8	2.1	7.3	9.6	1.2
19	BRZ	90	1	2.0	38.6	2.0	5.6	7.5	0.6
19	BRZ	90	2	2.0	39.9	2.1	6.1	8.0	0.6
19	BRZ	30	1	3.0	58.4	3.1	8.0	10.9	1.6
19	BRZ	30	2	3.0	58.9	3.1	8.2	11.9	1.5
19	BRZ	60	1	3.0	57.2	3.0	6.0	9.7	0.8
19	BRZ	60	2	3.0	57.1	3.0	6.3	9.3	0.8
19	BRZ	90	1	3.0	56.5	3.0	6.3	7.3	0.9
19	BRZ	90	2	3.0	56.3	3.0	5.2	7.2	0.5
19	BRZ	30	1	4.0	77.5	4.1	9.2	11.2	2.1
19	BRZ	30	2	4.0	77.3	4.1	9.0	10.7	2.2
19	BRZ	60	1	4.0	76.8	4.0	6.3	8.8	0.8
19	BRZ	60	2	4.0	78.0	4.1	6.6	9.0	1.2
19	BRZ	90	1	4.0	75.5	4.0	5.8	6.8	0.8
19	BRZ	90	2	4.0	75.6	4.0	5.7	6.7	0.8

Table C.1 (Continued) Data for T/NMAS Versus Air Voids for Granite Mixes

NMAS	Gradation	Compact.	Replicate	Target	Thickness,	Actual	Voids	Voids	Water
		Time, sec.		t/NMAS	mm	t/NMAS	SSD, %	Corelok, %	Abs., %
19	SMA	30	1	2.0	40.2	2.1	6.7	11.6	1.8
19	SMA	30	2	2.0	40.8	2.1	6.3	12.1	2.5
19	SMA	60	1	2.0	38.7	2.0	5.6	7.7	0.9
19	SMA	60	2	2.0	38.2	2.0	5.5	7.6	0.9
19	SMA	90	1	2.0	37.5	2.0	4.2	5.3	0.7
19	SMA	90	2	2.0	37.5	2.0	4.9	6.0	0.7
19	SMA	30	1	3.0	59.2	3.1	7.2	11.6	1.9
19	SMA	30	2	3.0	58.1	3.1	7.2	11.0	2.0
19	SMA	60	1	3.0	56.5	3.0	5.1	7.3	0.8
19	SMA	60	2	3.0	56.4	3.0	5.4	7.6	0.8
19	SMA	90	1	3.0	55.9	2.9	4.8	6.0	0.5
19	SMA	90	2	3.0	55.7	2.9	4.5	5.7	0.5
19	SMA	30	1	4.0	75.1	4.0	6.6	9.9	1.1
19	SMA	30	2	4.0	72.8	3.8	5.7	10.6	1.2
19	SMA	60	1	4.0	77.1	4.1	5.1	8.1	0.6
19	SMA	60	2	4.0	75.8	4.0	6.1	8.2	1.1
19	SMA	90	1	4.0	76.9	4.0	6.0	6.9	1.0
19	SMA	90	2	4.0	75.8	4.0	5.4	6.8	0.6

Table C.1 (Continued) Data for T/NMAS Versus Air Voids for Granite Mixes

NMAS	Gradation	Compact.	Replicate	Target	Thickness,	Actual	Voids	Voids	Water
		Time, sec.		t/NMAS	mm	t/NMAS	SSD, %	Corelok, %	Abs., %
9.5	ARZ	30	1	2.0	19.6	2.1	7.9	8.5	0.3
9.5	ARZ	30	2	2.0	19.4	2.0	7.6	7.8	0.3
9.5	ARZ	60	1	2.0	19.2	2.0	7.4	7.3	0.3
9.5	ARZ	60	2	2.0	19.5	2.1	7.9	7.8	0.4
9.5	ARZ	90	1	2.0	18.9	2.0	6.1	7.1	0.2
9.5	ARZ	90	2	2.0	18.8	2.0	5.3	6.9	0.1
9.5	ARZ	30	1	3.0	29.5	3.1	7.8	8.5	0.2
9.5	ARZ	30	2	3.0	29.9	3.1	8.7	8.7	0.3
9.5	ARZ	60	1	3.0	29.4	3.1	6.9	6.9	0.2
9.5	ARZ	60	2	3.0	29.6	3.1	7.2	7.2	0.2
9.5	ARZ	90	1	3.0	29.1	3.1	6.5	6.8	0.2
9.5	ARZ	90	2	3.0	29.1	3.1	6.3	6.5	0.1
9.5	ARZ	30	1	4.0	38.9	4.1	6.2	6.0	0.2
9.5	ARZ	30	2	4.0	39.0	4.1	6.6	8.4	0.2
9.5	ARZ	60	1	4.0	38.7	4.1	6.0	6.0	0.2
9.5	ARZ	60	2	4.0	38.8	4.1	6.3	6.3	0.2
9.5	ARZ	90	1	4.0	38.0	4.0	3.8	3.7	0.2
9.5	ARZ	90	2	4.0	39.0	4.1	4.0	4.4	0.1
9.5	BRZ	30	1	2.0	19.7	2.1	7.5	9.3	1.0
9.5	BRZ	30	2	2.0	19.5	2.1	7.1	8.3	0.8
9.5	BRZ	60	1	2.0	18.6	2.0	5.5	6.7	0.8
9.5	BRZ	60	2	2.0	19.2	2.0	6.6	7.8	1.0
9.5	BRZ	90	1	2.0	18.8	2.0	5.2	6.7	0.7
9.5	BRZ	90	2	2.0	18.9	2.0	5.5	6.4	0.8
9.5	BRZ	30	1	3.0	28.4	3.0	8.4	9.1	0.7
9.5	BRZ	30	2	3.0	28.2	3.0	8.2	8.8	0.5
9.5	BRZ	60	1	3.0	27.7	2.9	6.9	7.3	0.9
9.5	BRZ	60	2	3.0	28.2	3.0	7.0	7.4	0.9
9.5	BRZ	90	1	3.0	27.3	2.9	5.2	5.9	0.2
9.5	BRZ	90	2	3.0	27.1	2.9	4.5	5.5	0.3
9.5	BRZ	30	1	4.0	39.8	4.2	7.9	8.1	0.5
9.5	BRZ	30	2	4.0	39.6	4.2	7.7	8.1	0.5
9.5	BRZ	60	1	4.0	38.5	4.1	6.4	7.5	0.3
9.5	BRZ	60	2	4.0	39.5	4.2	7.0	8.1	0.3
9.5	BRZ	90	1	4.0	38.8	4.1	5.0	5.3	0.3
9.5	BRZ	90	2	4.0	38.8	4.1	5.0	5.1	0.4

Table C.2 Data for T/NMAS Versus Air Voids for Limestone Mixes

NMAS	Gradation	Compact.	Replicate	Target	Thickness,	Actual	Voids	Voids	Water
		Time, sec.		t/NMAS	mm	t/NMAS	SSD, %	Corelok, %	Abs., %
9.5	SMA	30	1	2.0	19.0	2.0	6.4	9.6	1.6
9.5	SMA	30	2	2.0	19.3	2.0	6.4	9.6	1.6
9.5	SMA	60	1	2.0	18.3	1.9	5.7	6.2	1.1
9.5	SMA	60	2	2.0	18.3	1.9	4.8	5.3	0.8
9.5	SMA	90	1	2.0	18.1	1.9	3.2	3.9	0.7
9.5	SMA	90	2	2.0	18.1	1.9	2.6	2.8	0.6
9.5	SMA	30	1	3.0	29.8	3.1	6.9	8.9	1.0
9.5	SMA	30	2	3.0	29.6	3.1	6.2	8.2	0.9
9.5	SMA	60	1	3.0	29.0	3.0	5.1	6.0	0.7
9.5	SMA	60	2	3.0	28.6	3.0	5.1	5.9	0.7
9.5	SMA	90	1	3.0	28.2	3.0	3.4	3.5	0.4
9.5	SMA	90	2	3.0	28.3	3.0	3.6	4.1	0.5
9.5	SMA	30	1	4.0	39.4	4.2	6.5	8.1	1.1
9.5	SMA	30	2	4.0	39.5	4.2	6.7	8.3	1.2
9.5	SMA	60	1	4.0	38.1	4.0	4.0	4.5	0.5
9.5	SMA	60	2	4.0	38.3	4.0	4.9	5.4	0.6
9.5	SMA	90	1	4.0	37.7	4.0	4.4	4.3	0.5
9.5	SMA	90	2	4.0	37.9	4.0	4.6	5.1	0.6
12.5	SMA	30	1	2.0	24.9	2.0	6.3	8.6	1.4
12.5	SMA	30	2	2.0	25.2	2.0	5.5	7.7	1.2
12.5	SMA	60	1	2.0	25.2	2.0	6.4	8.3	1.0
12.5	SMA	60	2	2.0	25.0	2.0	5.0	6.9	1.0
12.5	SMA	90	1	2.0	24.7	2.0	6.2	7.5	0.8
12.5	SMA	90	2	2.0	24.4	1.9	5.4	7.0	0.8
12.5	SMA	30	1	3.0	38.7	3.1	6.8	7.6	0.9
12.5	SMA	30	2	3.0	38.6	3.1	6.8	7.7	1.0
12.5	SMA	60	1	3.0	37.6	3.0	3.6	4.6	0.6
12.5	SMA	60	2	3.0	37.3	3.0	3.5	4.1	0.3
12.5	SMA	90	1	3.0	36.3	2.9	3.0	3.6	0.3
12.5	SMA	90	2	3.0	36.1	2.9	2.8	2.8	0.3
12.5	SMA	30	1	4.0	52.4	4.2	7.3	8.6	1.1
12.5	SMA	30	2	4.0	52.3	4.2	7.5	8.6	1.0
12.5	SMA	60	1	4.0	51.7	4.1	6.5	7.1	0.8
12.5	SMA	60	2	4.0	51.1	4.1	6.2	6.8	0.7
12.5	SMA	90	1	4.0	50.0	4.0	3.8	3.8	0.3
12.5	SMA	90	2	4.0	49.1	3.9	3.7	3.4	0.4

Table C.2 (Continued) Data for T/NMAS Versus Air Voids for Limestone Mixes

NMAS	Gradation	Compact.	Replicate	Target	Thickness,	Actual	Voids	Voids	Water
		Time, sec.		t/NMAS	mm	t/NMAS	SSD, %	Corelok, %	Abs., %
19	ARZ	30	1	2.0	39.8	2.1	7.8	8.0	0.3
19	ARZ	30	2	2.0	39.8	2.1	7.7	7.8	0.4
19	ARZ	60	1	2.0	39.6	2.1	7.2	7.7	0.4
19	ARZ	60	2	2.0	39.4	2.1	6.7	7.1	0.3
19	ARZ	90	1	2.0	38.0	2.0	4.8	4.9	0.2
19	ARZ	90	2	2.0	37.8	2.0	4.0	3.9	0.2
19	ARZ	30	1	3.0	59.8	3.1	8.7	8.7	1.0
19	ARZ	30	2	3.0	59.2	3.1	7.8	7.6	0.8
19	ARZ	60	1	3.0	59.3	3.1	6.6	6.4	0.4
19	ARZ	60	2	3.0	59.9	3.2	7.6	7.1	0.7
19	ARZ	90	1	3.0	57.6	3.0	5.7	5.2	0.2
19	ARZ	90	2	3.0	58.6	3.1	6.2	6.1	0.4
19	ARZ	30	1	4.0	76.6	4.0	8.0	8.0	1.2
19	ARZ	30	2	4.0	77.4	4.1	8.5	8.4	1.0
19	ARZ	60	1	4.0	74.3	3.9	5.7	5.7	0.5
19	ARZ	60	2	4.0	75.6	4.0	6.5	6.5	0.8
19	ARZ	90	1	4.0	75.0	3.9	5.8	5.4	0.5
19	ARZ	90	2	4.0	75.1	4.0	5.6	5.4	0.4
19	BRZ	30	1	2.0	39.5	2.1	8.0	9.6	1.0
19	BRZ	30	2	2.0	39.3	2.1	7.8	9.6	1.1
19	BRZ	60	1	2.0	38.1	2.0	5.7	7.2	0.6
19	BRZ	60	2	2.0	38.9	2.0	6.7	8.1	0.7
19	BRZ	90	1	2.0	38.0	2.0	4.1	5.5	0.3
19	BRZ	90	2	2.0	38.0	2.0	3.1	4.2	0.3
19	BRZ	30	1	3.0	59.6	3.1	7.2	8.8	1.1
19	BRZ	30	2	3.0	59.5	3.1	7.6	8.8	0.9
19	BRZ	60	1	3.0	58.2	3.1	5.5	6.6	0.5
19	BRZ	60	2	3.0	58.5	3.1	6.4	7.5	0.6
19	BRZ	90	1	3.0	58.4	3.1	4.7	5.3	0.2
19	BRZ	90	2	3.0	57.7	3.0	4.0	5.0	0.2
19	BRZ	30	1	4.0	76.1	4.0	7.5	8.4	0.7
19	BRZ	30	2	4.0	76.5	4.0	8.1	8.6	0.9
19	BRZ	60	1	4.0	75.3	4.0	6.3	7.0	0.5
19	BRZ	60	2	4.0	75.2	4.0	6.0	6.7	0.4
19	BRZ	90	1	4.0	74.4	3.9	5.8	6.3	0.3
19	BRZ	90	2	4.0	74.2	3.9	6.3	7.0	0.5

Table C.2 (Continued) Data for T/NMAS Versus Air Voids for Limestone Mixes

NMAS	Gradation	Compact.	Replicate	Target	Thickness,	Actual	Voids	Voids	Water
		Time, sec.		t/NMAS	mm	t/NMAS	SSD, %	Corelok, %	Abs., %
19	SMA	30	1	2.0	36.3	1.9	4.2	6.6	0.6
19	SMA	30	2	2.0	37.1	2.0	4.6	6.7	0.7
19	SMA	60	1	2.0	37.2	2.0	4.4	6.3	1.2
19	SMA	60	2	2.0	37.1	2.0	4.6	6.5	1.2
19	SMA	90	1	2.0	37.8	2.0	4.1	5.1	0.8
19	SMA	90	2	2.0	37.1	2.0	3.2	4.6	0.5
19	SMA	30	1	3.0	59.3	3.1	6.2	9.2	1.2
19	SMA	30	2	3.0	59.8	3.1	7.1	10.2	1.9
19	SMA	60	1	3.0	57.6	3.0	5.1	7.3	0.5
19	SMA	60	2	3.0	58.2	3.1	5.5	7.7	0.7
19	SMA	90	1	3.0	58.3	3.1	5.6	7.7	0.8
19	SMA	90	2	3.0	57.5	3.0	5.1	6.6	0.5
19	SMA	30	1	4.0	77.6	4.1	7.5	10.2	1.7
19	SMA	30	2	4.0	77.2	4.1	7.1	9.7	1.9
19	SMA	60	1	4.0	74.8	3.9	5.0	6.1	0.6
19	SMA	60	2	4.0	75.5	4.0	5.4	6.5	0.6
19	SMA	90	1	4.0	73.7	3.9	4.7	5.8	0.6
19	SMA	90	2	4.0	74.0	3.9	5.0	6.3	0.6

Table C.2 (Continued) Data for T/NMAS Versus Air Voids for Limestone Mixes

APPENDIX D

(LIFT THICKNESS VERSUS PERMEABILITY DATA)

NMAS	Gradation	Replicate	T/NMAS	Thickness,	Air Voids	Permeability,
				mm	(Corelok),%	10 ⁻⁵ cm/sec
9.5	ARZ	1	2.0	20.4	13.0	-
9.5	ARZ	2	2.0	19.1	11.9	-
9.5	ARZ	3	2.0	20.5	12.2	-
9.5	ARZ	1	3.0	29.3	9.5	-
9.5	ARZ	2	3.0	28.5	10.1	-
9.5	ARZ	3	3.0	27.9	8.7	-
9.5	ARZ	1	4.0	37.7	6.2	1
9.5	ARZ	2	4.0	37.8	6.6	1
9.5	ARZ	3	4.0	37.7	5.9	-
9.5	BRZ	1	2.0	21.1	17.1	-
9.5	BRZ	2	2.0	20.6	14.6	-
9.5	BRZ	3	2.0	21.0	16.7	-
9.5	BRZ	1	3.0	29.5	10.7	-
9.5	BRZ	2	3.0	29.2	11.5	-
9.5	BRZ	3	3.0	29.1	10.2	-
9.5	BRZ	1	4.0	39.8	7.7	26
9.5	BRZ	2	4.0	39.7	7.6	40
9.5	BRZ	3	4.0	39.0	8.6	-
9.5	SMA	1	2.0	20.8	18.2	-
9.5	SMA	2	2.0	21.7	18.0	-
9.5	SMA	3	2.0	21.5	18.6	-
9.5	SMA	1	3.0	29.5	12.3	-
9.5	SMA	2	3.0	30.4	13.3	-
9.5	SMA	3	3.0	29.6	12.8	-
9.5	SMA	1	4.0	38.5	9.9	-
9.5	SMA	2	4.0	39.1	9.6	-
9.5	SMA	3	4.0	38.4	9.1	-
12.5	SMA	1	2.0	25.8	17.1	-
12.5	SMA	2	2.0	25.2	15.7	-
12.5	SMA	3	2.0	26.0	17.4	-
12.5	SMA	1	3.0	37.5	15.1	-
12.5	SMA	2	3.0	37.5	13.6	-
12.5	SMA	3	3.0	37.5	14.3	-
12.5	SMA	1	4.0	50.0	10.1	-
12.5	SMA	2	4.0	50.0	10.5	-
12.5	SMA	3	4.0	50.0	11.2	-

Table D.1 Data for T/NMAS Versus Permeability for Granite Mixes Using Gyratory Compactor

NMAS	Gradation	Replicate	T/NMAS	Thickness,	Air Voids	Permeability,
				mm	(Corelok),%	10 ⁻⁵ cm/sec
19	ARZ	1	2.0	39.6	6.6	40
19	ARZ	2	2.0	39.8	7.9	117
19	ARZ	3	2.0	39.5	6.1	17
19	ARZ	1	3.0	56.6	7.9	0
19	ARZ	2	3.0	56.8	7.4	1
19	ARZ	3	3.0	57.0	8.0	2
19	ARZ	1	4.0	75.7	6.9	7
19	ARZ	2	4.0	75.5	7.1	14
19	ARZ	3	4.0	75.7	7.3	14
19	BRZ	1	2.0	38.9	9.7	-
19	BRZ	2	2.0	38.7	10.3	-
19	BRZ	3	2.0	39.0	10.1	-
19	BRZ	1	3.0	57.0	8.3	-
19	BRZ	2	3.0	57.0	8.5	-
19	BRZ	3	3.0	57.0	8.2	-
19	BRZ	1	4.0	76.6	5.9	-
19	BRZ	2	4.0	77.4	6.5	303
19	BRZ	3	4.0	77.3	6.3	251
19	SMA	1	2.0	39.1	12.8	-
19	SMA	2	2.0	38.0	10.7	-
19	SMA	3	2.0	38.7	11.8	-
19	SMA	1	3.0	57.0	8.5	-
19	SMA	2	3.0	57.0	8.5	-
19	SMA	3	3.0	57.0	8.6	-
19	SMA	1	4.0	76.9	7.7	425
19	SMA	2	4.0	77.1	7.5	559
19	SMA	3	4.0	77.0	7.3	49

 Table D.1 (Continued) Data for T/NMAS Versus Permeability for Granite Mixes

 Using Gyratory Compactor

NMAS	Gradation	Replicate	T/NMAS	Thickness,	Air Voids	Permeability,	
				mm	(Corelok),%	10 ⁻⁵ cm/sec	
9.5	ARZ	1	2	20.8	14.7	-	
9.5	ARZ	2	2	20.4	13.0	-	
9.5	ARZ	3	2	20.6	13.0	-	
9.5	ARZ	1	3	29.7	9.7	-	
9.5	ARZ	2	3	29.8	9.9	-	
9.5	ARZ	3	3	29.4	8.6	-	
9.5	ARZ	1	4	38.1	6.7	3	
9.5	ARZ	2	4	38.1	6.8	4	
9.5	ARZ	3	4	37.9	6.7	3	
9.5	BRZ	1	2	20.9	15.3	-	
9.5	BRZ	2	2	20.8	14.2	-	
9.5	BRZ	3	2	20.6	14.6	-	
9.5	BRZ	1	3	28.7	12.3	-	
9.5	BRZ	2	3	28.7	11.5	-	
9.5	BRZ	3	3	28.7	12.5	-	
9.5	BRZ	1	4	4 37.5 7.5		33	
9.5	BRZ	2	4	37.4	7.3	19	
9.5	BRZ	3	4	37.5	6.8	7	
9.5	SMA	1	2	20.2	15.6	-	
9.5	SMA	2	2	20.2	15.6	-	
9.5	SMA	3	2	19.6	12.0	-	
9.5	SMA	1	3	29.4	10.0	-	
9.5	SMA	2	3	29.8	12.9	-	
9.5	SMA	3	3	29.1	8.5	-	
9.5	SMA	1	4	38.0	7.9	-	
9.5	SMA	2	4	38.0	8.6	-	
9.5	SMA	3	4	38.0	8.9	-	
12.5	SMA	1	2	27.0	17.1	-	
12.5	SMA	2	2	26.3	15.7	-	
12.5	SMA	3	2	27.2	17.4	-	
12.5	SMA	1	3	38.7	15.1	-	
12.5	SMA	2	3	39.1	13.6	-	
12.5	SMA	3	3	39.0	14.3	-	
12.5	SMA	1	4	50.6	10.1	-	
12.5	SMA	2	4	51.2	10.5	-	
12.5	SMA	3	4	50.3	11.2	-	

Table D.2 Data for T/NMAS Versus Permeability for Limestone Mixes Using Gyratory Compactor

NMAS	Gradation	Replicate	T/NMAS	Thickness,	Air Voids	Permeability,
				mm	(Corelok),%	10 ⁻⁵ cm/sec
19	ARZ	1	2	38.0	10.5	-
19	ARZ	2	2	38.8	10.6	-
19	ARZ	3	2	38.8	10.3	-
19	ARZ	1	3	56.6	6.8	4
19	ARZ	2	3	56.9	7.1	4
19	ARZ	3	3	56.8	8.4	-
19	ARZ	1	4	77.0	6.5	1
19	ARZ	2	4	74.8	7.0	6
19	ARZ	3	4	77.2	7.2	4
19	BRZ	1	2	38.1	8.9	-
19	BRZ	2	2	38.0 9.0		-
19	BRZ	3	2	38.0	11.0	-
19	BRZ	1	3	57.6	6.6	225
19	BRZ	2	3	56.3	6.3	21
19	BRZ	3	3	56.9	6.1	80
19	BRZ	1	4	75.7	7.6	118
19	BRZ	2	4	76.1	7.7	177
19	BRZ	3	4	76.0	9.2	-
19	SMA	1	2	38.0	14.6	-
19	SMA	2	2	38.0	14.6	-
19	SMA	3	2	38.0	13.9	-
19	SMA	1	3	57.0	8.2	-
19	SMA	2	3	57.0	8.0	-
19	SMA	3	3	57.0	8.6	-
19	SMA	1	4	76.7	6.5	2
19	SMA	2	4	76.9	6.7	264
19	SMA	3	4	77.8	7.3	82

 Table D.2 (Continued) Data for T/NMAS Versus Permeability for Limestone Mixes

 Using Gyratory Compactor

					Air Voids	Permeability,
NMAS	Gradation	T/NMAS	Replicate	Thickness, mm	(Corelok), %	10x-5 cm/sec
9.5	ARZ	2	1	19.1	6.8	31
9.5	ARZ	2	2	19.8	6.0	5
9.5	ARZ	3	1	29.3	6.0	1
9.5	ARZ	3	2	28.7	6.1	4
9.5	ARZ	4	1	39.5	7.7	10
9.5	ARZ	4	2	39.2	7.3	10
9.5	BRZ	2	1	20.3	7.1	0
9.5	BRZ	2	2	19.6	8.0	87
9.5	BRZ	3	1	29.8	8.0	2
9.5	BRZ	3	2	29.5	7.4	0
9.5	BRZ	4	1	39.8	8.0	2
9.5	BRZ	4	2	39.6	7.9	0
9.5	SMA	2	1	18.6	7.0	301
9.5	SMA	2	2	18.4	7.0	174
9.5	SMA	3	1	28.8	6.9	103
9.5	SMA	3	2	28.7	6.9	0
9.5	SMA	4	1	39.4	7.5	0
9.5	SMA	4	2	39.2	7.8	78
12.5	SMA	2	1	24.3	7.8	470
12.5	SMA	2	2	25.1	6.7	226
12.5	SMA	3	1	38.3	6.1	0
12.5	SMA	3	2	38.1	6.0	0
12.5	SMA	4	1	50.9	6.4	0
12.5	SMA	4	2	51.5	7.5	107
19	ARZ	2	1	39.1	6.9	0
19	ARZ	2	2	40.6	7.6	0
19	ARZ	3	1	59.7	6.1	0
19	ARZ	3	2	59.7	6.0	0
19	ARZ	4	1	77.9	6.7	0
19	ARZ	4	2	77.1	6.7	0
19	BRZ	2	1	39.7	6.0	0
19	BRZ	2	2	39.4	7.9	130
19	BRZ	3	1	59.9	7.0	0
19	BRZ	3	2	59.8	7.9	174
19	BRZ	4	1	75.6	7.2	86
19	BRZ	4	2	75.0	7.1	0
19	SMA	2	1	39.1	6.9	0
19	SMA	2	2	38.8	7.9	0
19	SMA	3	1	56.4	6.6	0
19	SMA	3	2	56.2	7.9	49
19	SMA	4	1	77.0	8.0	0
19	SMA	4	2	76.6	7.0	0

Table D.3 Data for T/NMAS Versus Permeability for Granite Mixes Using Vibratory Compactor

					Air Voids	Permeability
NMAS	Gradation	Ponlicato	τ/ΝΜΔς	Thickness mm	(Corelok) %	10x ⁻⁵ cm/sec
9.5			2	19.5	8 0	15
9.5		2	2	19.5	8.0	9
9.5		1	2	29.6	7 4	23
9.5		2	3	29.0	7.4	32
9.5		1	4	39.4	6.3	6
9.5	AR7	2	4	38.6	7 1	23
9.5	BR7	1	2	19.7	6.4	0
9.5	BR7	2	2	18.1	7.0	122
9.5	BR7	1	3	28.4	6.4	0
9.5	BR7	2	3	26.4	7.5	54
9.5	BR7	1	4	38.2	7.2	0
9.5	BR7	2	4	38.0	7.0	0
9.5	SMA	1	2	19.5	6.3	165
9.5	SMA	2	2	18.1	6.0	51
9.5	SMA	1	3	29.7	77	134
9.5	SMA	2	3	29.9	6.3	18
9.5	SMA	1	4	39.4	6.4	12
9.5	SMA	2	4	39.5	74	0
12.5	SMA	1	2	24.3	6.5	0
12.5	SMA	2	2	24.7	6.5	87
12.5	SMA	1	3	37.6	6.1	0
12.5	SMA	2	3	38.4	6.2	4
12.5	SMA	1	4	50.9	6.0	11
12.5	SMA	2	4	51.4	6.8	8
19	ARZ	1	2	38.9	8.0	27
19	ARZ	2	2	39.7	6.8	47
19	ARZ	1	3	59.4	7.9	25
19	ARZ	2	3	58.4	7.8	18
19	ARZ	1	4	76.3	7.1	12
19	ARZ	2	4	75.6	6.2	11
19	BRZ	1	2	38.4	6.9	0
19	BRZ	2	2	38.2	6.0	0
19	BRZ	1	3	57.8	6.1	0
19	BRZ	2	3	58.8	6.0	19
19	BRZ	1	4	74.6	6.1	0
19	BRZ	2	4	75.1	6.6	0
19	SMA	1	2	36.8	6.1	0
19	SMA	2	2	37.0	6.0	0
19	SMA	1	3	57.7	6.9	0
19	SMA	2	3	57.0	6.1	0
19	SMA	1	4	75.8	6.0	0
19	SMA	2	4	75.3	6.5	0

Table D.4 Data for T/NMAS Versus Permeability for Limestone Mixes Using Vibratory Compactor

APPENDIX E

(FACTORS AFFENCTING PERMEABILITY DATA USING FIELD CORE SAMPLES)

				Core						
Site	NMAS	Gradation	N _{des}	No.	Height	Voids	Voids	Water	VMA	Permeability
					(cm)	SSD (%)	Corelok (%)	Abs. (%)	Corelok (%)	(x 10 ⁻⁵ cm/sec)
Project 1	9.5	С	86	1	32.8	8.78	8.80	0.40	19.4	69
Project 1	9.5	С	86	2	36.9	7.41	7.26	0.21	18.0	16
Project 1	9.5	С	86	3	35.8	7.51	7.75	0.26	18.5	9
Project 1	9.5	С	86	4	32.3	7.74	7.69	0.31	18.8	31
Project 1	9.5	С	86	5	31.3	9.77	9.53	0.60	20.4	249
Project 1	9.5	С	86	6	36.9	7.33	7.41	0.34	18.5	69
Project 2	9.5	С	90	1	43.1	9.14	11.17	0.90	*	343
Project 2	9.5	С	90	2	33.7	10.35	11.40	0.69	*	612
Project 2	9.5	С	90	3	44.1	10.71	12.66	1.65	*	880
Project 2	9.5	С	90	4	42.7	10.70	11.83	1.58	*	849
Project 2	9.5	С	90	5	43.4	7.87	10.05	0.59	*	90
Project 2	9.5	С	90	6	41.3	6.51	9.54	0.33	*	10
Project 2	9.5	С	90	7	42.0	10.43	13.13	1.56	*	768
Project 2	9.5	С	90	8	44.2	10.37	12.49	3.23	*	583
Project 2	9.5	С	90	9	37.5	9.05	10.52	0.54	*	239
Project 2	9.5	С	90	10	32.6	9.35	14.76	0.55	*	303
Project 3	9.5	С	90	1	44.8	8.40	9.50	0.60	18.7	63
Project 3	9.5	С	90	2	43.9	8.64	10.13	0.98	19.3	220
Project 3	9.5	С	90	3	46.7	8.15	9.70	0.66	18.9	112
Project 3	9.5	С	90	4	45.3	9.53	11.28	2.13	20.9	389
Project 3	9.5	С	90	5	45.8	8.76	11.05	1.19	20.7	209
Project 3	9.5	С	90	6	42.7	8.23	8.31	0.57	18.3	196
Project 3	9.5	C	90	7	38.9	9.23	11.64	0.59	20.4	129
Project 3	9.5	С	90	8	46.0	10.41	11.21	1.01	20.0	286
Project 3	9.5	C	90	9	46.2	10.61	13.23	1.56	21.8	319
Project 4	9.5	С	105	1	54.2	9.45	11.28	1.34	19.7	371
Project 4	9.5	С	105	2	50.7	9.41	10.71	1.41	19.2	494
Project 4	9.5	С	105	3	45.5	9.00	11.29	1.32	19.8	377
Project 4	9.5	С	105	4	43.5	7.38	9.29	0.64	18.3	79
Project 4	9.5	С	105	5	42.3	8.81	10.70	0.61	19.6	255
Project 4	9.5	С	105	6	38.7	8.48	10.47	0.48	19.4	206
Project 4	9.5	С	105	7	45.7	8.32	9.61	1.00	18.6	230
Project 4	9.5	С	105	8	44.9	7.06	8.16	0.69	17.3	102
Project 4	9.5	С	105	9	45.9	6.83	7.77	0.78	16.9	60
Project 5	9.5	С	50	1	47.7	15.97	16.87	3.49	26.5	1576
Project 5	9.5	С	50	2	35.5	14.98	14.75	0.94	24.6	983
Project 5	9.5	С	50	3	31.6	14.55	14.84	0.89	24.7	881
Project 5	9.5	С	50	4	27.2	19.82	21.12	2.05	31.0	3605
Project 5	9.5	С	50	5	28.9	15.40	15.60	1.32	26.2	3866
Project 5	9.5	С	50	6	16.4	17.28	18.85	1.38	29.0	2276
Project 6	9.5	С	100	1	37.1	8.81	9.06	0.41	18.6	166
Project 6	9.5	С	100	2	35.6	8.76	8.90	0.42	18.4	136
Project 6	9.5	С	100	3	29.3	8.42	8.69	0.43	18.2	73
Project 6	9.5	С	100	4	31.8	7.52	7.76	0.42	18.0	36
Project 6	9.5	С	100	5	37.0	8.32	8.40	0.37	18.6	124
Project 6	9.5	С	100	6	32.6	8.55	8.92	0.48	19.0	115

Table E.1 Permeability Data for Core Samples

Site	NMAS	Gradation	N _{des}	Core #.	Height	Voids	Voids	Water	VMA	Permeability
					(cm)	SSD (%)	Corelok (%)	Abs. (%)	Corelok (%)	(x 10 ⁻⁵ cm/sec)
Project 7	9.5	С	125	1	39.0	6.8	7.0	0.32	*	11
Project 7	9.5	С	125	2	36.6	5.1	5.3	0.17	*	6
Project 7	9.5	С	125	3	39.0	7.9	8.3	0.42	*	57
Project 7	9.5	С	125	4	23.8	8.7	9.2	0.31	*	46
Project 7	9.5	С	125	5	32.0	8.8	10.0	0.45	*	318
Project 7	9.5	С	125	6	38.8	8.3	8.9	0.41	*	342
Project 8	9.5	С	100	1	50.7	12.2	13.5	2.2	23.0	1619
Project 8	9.5	С	100	2	49.0	10.9	12.6	1.9	22.2	1152
Project 8	9.5	С	100	3	52.8	11.3	12.0	1.9	21.7	772
Project 8	9.5	С	100	4	44.1	10.1	11.0	1.5	20.7	535
Project 8	9.5	С	100	5	43.1	10.6	12.8	2.5	22.3	667
Project 8	9.5	С	100	6	41.0	9.3	10.7	1.3	20.4	360
Project 8	9.5	С	100	7	34.2	9.4	9.8	0.7	19.5	215
Project 8	9.5	С	100	8	36.0	7.0	8.0	0.3	17.9	23
Project 8	9.5	С	100	9	46.2	8.5	9.9	0.8	19.6	108
Project 9	9.5	С	100	1	27.4	12.6	13.4	0.9	22.3	998
Project 9	9.5	С	100	2	25.5	9.0	9.8	0.6	19.1	157
Project 9	9.5	С	100	3	23.9	9.4	10.2	0.7	19.4	142
Project 9	9.5	С	100	4	23.6	9.5	10.1	0.9	19.8	321
Project 9	9.5	С	100	5	18.1	9.2	10.0	0.7	19.7	356
Project 9	9.5	С	100	6	18.9	8.0	8.9	0.4	18.7	108
Project 9	9.5	С	100	7	20.8	9.0	10.0	0.7	20.0	314
Project 9	9.5	С	100	8	21.4	9.6	10.1	0.5	20.0	290
Project 9	9.5	C	100	9	21.3	11.3	11.4	0.9	21.2	362
Project 10	9.5	F	75	1	39.9	7.4	7.7	0.2	19.2	2
Project 10	9.5	F	75	2	44.5	5.5	5.7	0.1	17.4	1
Project 10	9.5	F	75	3	42.0	7.8	7.6	0.1	19.1	3
Project 10	9.5	F	75	4	37.2	7.1	7.0	0.2	18.5	7
Project 10	9.5	F	75	5	39.1	7.8	8.6	0.2	19.9	16
Project 11	9.5	F	75	1	32.7	10.4	10.8	0.4	*	200
Project 11	9.5	F	75	2	36.5	9.6	10.1	0.4	*	114
Project 11	9.5	F	75	3	32.9	9.4	9.8	0.4	*	108
Project 11	9.5	F	75	4	34.3	8.3	9.1	0.3	*	65
Project 11	9.5	F	75	5	29.9	12.5	13.4	0.7	*	695
Project 11	9.5	F	75	6	28.8	11.3	12.0	0.5	*	511
Project 11	9.5	F	75	7	28.7	12.6	16.5	0.8	*	1631
Project 11	9.5	F	75	8	31.1	9.5	9.4	0.2	*	53
Project 11	9.5	F	75	9	36.4	10.1	10.4	0.3	*	91
Project 12	12.5	С	106	1	40.6	11.6	12.6	1.3	24.0	275
Project 12	12.5	C	106	2	39.1	11.7	13.5	2.1	24.9	632
Project 13	12.5	С	100	1	41.0	13.5	19.6	3.5	27.1	8485
Project 13	12.5	С	100	2	41.7	14.1	21.3	2.6	28.7	12800
Project 13	12.5	С	100	3	48.1	11.3	15.4	2.3	23.7	3393
Project 13	12.5	С	100	4	42.0	12.0	14.4	2.2	22.6	2252
Project 13	12.5	С	100	5	39.0	11.4	13.6	1.3	21.9	1352

 Table E.1 (Continued) Permeability Data for Core Samples

1	(1				
Site	NMAS	Gradation	N_{des}	Core #.	Height	Voids	Voids	Water	VMA	Permeability
					(cm)	SSD (%)	Corelok (%)	Abs. (%)	Corelok (%)	(x 10 ⁻⁵ cm/sec)
Project 14	12.5	С	100	1	30.1	11.6	13.7	0.8	23.9	840
Project 14	12.5	С	100	2	32.4	10.9	12.5	1.2	22.7	333
Project 14	12.5	С	100	3	29.9	11.4	13.3	0.7	23.5	752
Project 14	12.5	С	100	4	51.8	8.7	10.3	0.9	20.3	23
Project 14	12.5	С	100	5	45.2	10.1	11.6	0.9	21.5	324
Project 14	12.5	С	100	6	38.7	10.8	12.2	0.4	22.0	247
Project 15	12.5	С	75	1	36.0	8.0	8.5	0.3	18.3	13
Project 15	12.5	С	75	2	32.7	8.6	10.1	0.4	19.7	24
Project 15	12.5	С	75	3	35.7	12.3	14.2	1.0	23.4	213
Project 15	12.5	С	75	4	33.1	10.0	11.3	0.4	20.6	28
Project 15	12.5	С	75	5	30.3	9.7	10.9	0.3	20.3	226
Project 15	12.5	С	75	6	29.4	10.9	12.1	0.6	21.3	483
Proiect 15	12.5	С	75	7	33.7	9.2	11.0	0.3	20.3	32
Proiect 15	12.5	С	75	8	34.1	12.8	14.2	0.8	23.2	935
Project 15	12.5	C	75	9	38.7	12.3	13.3	1.1	22.4	560
Project 16	12.5	C	125	1	54.6	8.3	9.8	2.3	18.9	463
Project 16	12.5	C	125	2	55.5	6.0	7.3	1.1	16.6	48
Project 16	12.5	C	125	3	54.5	8.6	9.8	2.9	18.9	569
Project 16	12.5	C	125	4	51.9	8.1	9.5	21	18.9	340
Project 16	12.5	C C	125	5	53.2	8.3	9.3	2.1	18.7	481
Project 16	12.5	C C	125	6	54 1	8.0	9.0	2.1	18.4	256
Project 16	12.0	C	125	7	53.3	8.4	10.2	2.0	10.4	200
Project 16	12.5	C	125	8	52.4	87	9.6	2.7	18.7	451
Project 16	12.5	C C	125	0 0	52.4 52.4	83	9.0	1.2	18.4	206
Project 17	12.5	0 C	125	1	55.8	11.3	12.2	3.4	18.5	103/
Project 17	12.5	C C	125	2	JJ.0	11.5	12.3	2.4 2.6	10.5	3063
Project 17	12.5	C C	125	2	44.5	10.2	13.3	2.0	19.5	912
Project 17	12.0		120	3	40.7 52.6	10.5	11.4	2.1	17.7	012
Project 17	12.0		120	4	52.0	10.1	13.0	5.5	19.7	3039
Project 17	12.5		120	5	51.9	12.1	13.5	4.4	20.2	3304
Project 17	12.5		120	0	54.3	10.4	11.0	3.1	18.4	1245
Project 18	12.5		125	1	51.8	9.4	10.1	1.4	20.2	399
Project 18	12.5		120	2	52.9	0.7	9.5	1.2	19.7	220
Project 18	12.5		125	3	49.3	8.2	8.7	0.8	19.0	84
Project 18	12.5	C	125	4	53.9	9.6	12.3	1.7	21.9	392
Project 18	12.5	C	125	5	55.4	8.0	8.8	0.8	18.8	37
Project 18	12.5	C	125	6	53.4	9.0	10.1	1.2	19.9	291
Project 19	12.5	C	125	1	57.7	10.1	13.9	1.1	24.1	485
Project 19	12.5	C	125	2	56.8	9.3	10.3	1.4	21.0	231
Project 19	12.5	C	125	3	66.1	9.6	10.5	1.1	21.2	252
Project 19	12.5	C	125	4	57.8	10.3	11.0	1.2	22.1	453
Project 19	12.5	C	125	5	52.2	9.9	10.9	1.1	22.0	523
Project 19	12.5	C	125	6	49.6	8.2	9.1	0.9	20.5	164
Project 19	12.5	C	125	7	58.7	9.8	10.7	1.5	21.6	510
Project 19	12.5	C	125	8	57.1	9.9	10.9	1.3	21.8	396
Project 19	12.5	С	125	9	55.2	9.5	10.2	0.9	21.1	235

Table E.1 (Continued) Permeability Data for Core Samples

	(p		1	
Site	NMAS	Gradation	N _{des}	Core #.	Height	Voids	Voids	Water	VMA	Permeability
					(cm)	SSD (%)	Corelok (%)	Abs. (%)	Corelok (%)	(x 10 ⁻⁵ cm/sec)
Project 20	12.5	С	109	1	58.3	6.4	6.8	0.2	17.0	19
Project 20	12.5	С	109	2	49.8	7.3	7.4	0.3	17.5	59
Project 20	12.5	С	109	3	47.9	7.6	11.1	0.3	20.9	88
Project 20	12.5	С	109	4	50.6	6.8	7.1	0.1	17.0	5
Project 20	12.5	С	109	5	43.9	6.5	6.6	0.3	16.6	8
Project 20	12.5	С	109	6	53.1	6.7	7.5	0.3	17.4	53
Project 21	12.5	С	86	1	61.8	6.5	7.9	1.5	17.8	36
Project 21	12.5	С	86	2	62.0	6.1	7.3	1.3	17.2	36
Project 21	12.5	С	86	3	61.4	5.5	6.5	1.1	16.5	28
Project 21	12.5	С	86	4	46.3	6.5	6.6	0.4	16.8	195
Project 21	12.5	С	86	5	54.7	6.5	7.3	1.3	17.4	172
Project 21	12.5	С	86	6	33.6	5.4	5.5	0.2	15.8	48
Project 21	12.5	С	86	7	39.4	6.7	7.3	0.3	17.0	119
Project 21	12.5	С	86	8	34.8	6.4	7.0	0.1	16.7	48
Project 21	12.5	С	86	9	34.8	7.1	7.4	0.3	17.0	148
Project 22	12.5	С	100	1	44.0	3.8	6.9	0.1	*	1
Project 22	12.5	С	100	2	47.1	5.1	5.6	0.2	*	1
Project 22	12.5	С	100	3	37.0	6.0	5.9	0.2	*	1
Project 22	12.5	С	100	4	37.5	4.9	4.8	0.2	*	4
Project 22	12.5	С	100	5	56.6	5.2	5.5	0.3	*	1
Project 22	12.5	С	100	6	43.7	4.1	4.5	0.1	*	1
Project 22	12.5	С	100	7	42.0	5.0	5.1	0.2	*	1
Project 22	12.5	С	100	8	54.3	6.2	6.5	0.3	*	1
Project 22	12.5	С	100	9	35.0	7.0	7.0	0.2	*	7
Project 23	12.5	С	125	1	52.8	8.4	10.6	0.5	*	396
Project 23	12.5	С	125	2	54.2	9.8	11.9	0.9	*	1574
Project 23	12.5	С	125	3	49.6	4.8	5.8	0.1	*	1
Project 23	12.5	С	125	4	52.2	7.6	9.6	0.3	*	94
Project 23	12.5	С	125	5	50.4	6.9	9.1	0.3	*	120
Project 23	12.5	С	125	6	52.2	6.4	7.5	0.2	*	18
Project 23	12.5	С	125	7	48.8	7.8	10.0	0.3	*	111
Project 23	12.5	С	125	8	50.9	6.6	8.4	0.3	*	2
Project 23	12.5	С	125	9	48.6	7.8	9.0	0.4	*	20
Project 24	12.5	С	100	1	67.2	10.4	11.4	1.3	22.0	166
Project 24	12.5	С	100	2	65.5	9.0	9.2	0.6	20.1	29
Project 24	12.5	С	100	3	64.8	6.6	7.6	0.3	18.7	1
Project 24	12.5	C	100	4	90.4	9.2	10.1	2.5	20.4	3
Project 24	12.5	C	100	5	93.2	8.9	9.7	2.1	20.0	1
Project 24	12.5	С	100	6	93.9	9.6	10.0	2.0	20.3	80
Project 24	12.5	С	100	7	84.2	8.4	8.7	0.8	19.7	86
Project 24	12.5	С	100	8	78.8	8.3	8.6	1.1	19.6	137
Project 24	12.5	С	100	9	71.4	7.5	8.2	0.6	19.3	24

Table E.1 (Continued) Permeability Data for Core Samples
Site	NMAS	Gradation	N _{des}	Core #.	Height	Voids	Voids	Water	VMA	Permeability
					(cm)	SSD (%)	Corelok (%)	Abs. (%)	Corelok (%)	(x 10 ⁻⁵ cm/sec)
Project 25	12.5	С	125	1	49.4	7.3	9.0	0.6	18.7	16
Project 25	12.5	С	125	2	46.5	6.1	7.8	0.3	17.6	1
Project 25	12.5	С	125	3	47.2	6.5	8.3	0.2	18.1	10
Project 25	12.5	С	125	4	50.5	7.0	8.5	0.4	18.6	83
Project 25	12.5	С	125	5	48.8	7.0	8.5	0.4	18.5	52
Project 25	12.5	С	125	6	50.6	6.9	8.1	0.4	18.2	48
Project 25	12.5	С	125	7	47.6	6.0	7.5	0.2	17.7	22
Proiect 25	12.5	С	125	8	47.5	5.7	6.9	0.1	17.1	1
Proiect 25	12.5	С	125	9	47.3	6.2	8.2	0.2	18.3	32
Proiect 26	12.5	С	100	1	39.0	7.3	7.2	0.1	17.1	14
Proiect 26	12.5	С	100	2	40.9	8.5	8.8	0.1	18.4	26
Project 26	12.5	C	100	3	36.5	8.8	8.7	0.3	18.4	27
Project 26	12.5	Ċ	100	4	35.7	5.9	5.8	0.1	16.0	6
Project 26	12.5	C	100	5	33.7	6.5	6.5	0.1	16.6	16
Project 26	12.5	C	100	6	35.6	7.7	7.4	0.2	17.4	55
Project 26	12.5	C	100	7	29.5	7.8	7.7	0.2	18.1	119
Project 26	12.5	C	100	8	37.8	8.8	9.0	0.2	19.2	61
Project 26	12.5	Ċ	100	9	38.1	8.2	7.8	0.1	18.1	66
Project 27	12.5	F	86	1	53.2	3.7	4.2	0.2	16.2	1
Project 27	12.5	F	86	2	51 4	5.2	5.6	0.1	17.4	4
Project 27	12.5	F	86	3	53.1	5.1	5.6	0.1	17.4	15
Project 27	12.5	F	86	4	45.5	5.2	6.8	0.1	17.8	4
Project 27	12.0	F	86	5	45.7	5.6	6.8	0.1	17.8	1
Project 27	12.0	F	86	6	50.5	6.2	6.6	0.2	17.6	18
Project 27	12.0	F	86	7	57.0	6.4	74	0.2	18.3	24
Project 27	12.5	F	86	8	61.3	54	60	0.2	17.1	27
Project 27	12.0	F	86	q	62.3	53	6.5	0.1	17.1	<u>م</u>
Project 28	12.0	F	86	1	32.9	6.9	7.2	0.1	18.0	44
Project 28	12.0	F	86	2	31.8	8.3	8.7	0.0	19.3	125
Project 28	12.5	F	86	3	39.4	7.3	7.6	0.3	18.3	48
Project 28	12.5	F	86	4	50.5	9.0	9.5	0.9	19.7	143
Project 28	12.5	F	86	5	50.8	9.1	97	0.9	19.8	150
Project 28	12.5	F	86	6	50.2	87	9.1	0.5	19.3	127
Project 28	12.5	F	86	7	49 1	9.3	97	1.0	19.8	242
Project 28	12.5	F	86	8	47.9	9.2	9.6	0.9	19.7	172
Project 28	12.5	F	86	9	46.2	9.3	10.1	0.7	20.2	148
Project 29	12.5	F	125	1	26.7	8.9	9.0	0.3	18.4	40
Project 29	12.5	F	125	2	37.5	9.7	9.4	0.2	18.7	54
Project 29	12.5	F	125	3	35.1	12.2	12.0	0.2	21.1	81
Project 29	12.5	F	125	4	41.9	8.7	9.0	0.3	18.5	52
Project 29	12.5	F	125	5	38.7	11 1	11.5	0.4	20.7	149
Project 29	12.5	F	125	6	40.0	11.0	11.0	0.1	20.2	71
Project 29	12.5	F	125	7	60.5	10.8	10.6	0.3	19.6	132
Project 29	12.5	F	125	8	66 1	10.5	10.8	0.3	19.7	107
Project 29	12.5	F	125	9	66.0	97	10.0	0.3	19.1	88
Project 30	12.5	F	68	1	47.5	8.1	8.7	0.3	25.4	25
Project 30	12.5	F	68	2	38.4	7.0	7.1	0.3	24.4	4
Project 30	12.5	F	68	3	38.2	9.4	9.2	0.2	26.1	35
Project 30	12.5	F	68	4	34.9	8.1	8.1	0.3	25.2	11

 Table E.1 (Continued) Permeability Data for Core Samples

Site	NMAS	Gradation	N _{des}	Core #.	Height	Voids	Voids	Water	VMA	Permeability
					(cm)	SSD (%)	Corelok (%)	Abs. (%)	Corelok (%)	(x 10 ⁻⁵ cm/sec)
Project 31	12.5	F	76	1	56.4	9.8	11.1	0.4	*	163
Project 31	12.5	F	76	2	55.3	10.0	10.9	0.4	*	212
Project 31	12.5	F	76	3	52.6	9.7	10.3	0.2	*	137
Project 31	12.5	F	76	4	53.1	7.1	7.9	0.2	*	76
Project 31	12.5	F	76	5	51.8	9.1	9.6	1.0	*	116
Project 31	12.5	F	76	6	51.5	9.9	10.9	0.9	*	107
Project 31	12.5	F	76	7	47.6	8.7	9.7	0.4	*	103
Project 31	12.5	F	76	8	46.3	8.7	9.9	0.4	*	61
Project 31	12.5	F	76	9	46.3	10.2	12.3	0.6	*	141
Project 32	12.5	F	109	1	64.4	8.2	8.7	0.5	*	3
Project 32	12.5	F	109	2	59.1	8.1	8.9	0.5	*	37
Project 32	12.5	F	109	3	64.1	7.7	7.6	0.4	*	5
Project 32	12.5	F	109	4	52.4	7.9	7.9	0.3	*	20
Project 32	12.5	F	109	5	51.3	7.9	7.7	0.4	*	38
Project 32	12.5	F	109	6	52.6	7.1	7.3	0.5	*	218
Project 32	12.5	F	109	7	51.9	8.1	8.6	0.3	*	125
Project 32	12.5	F	109	8	49.6	8.7	9.0	0.5	*	160
Project 32	12.5	F	109	9	51.8	7.7	7.9	0.4	*	97
Project 33	12.5	F	100	1	35.6	9.9	11.1	1.0	21.0	326
Project 33	12.5	F	100	2	34.2	11.1	12.3	1.1	22.0	590
Project 33	12.5	F	100	3	34.9	12.6	13.2	1.2	22.9	797
Project 33	12.5	F	100	4	32.4	10.5	11.2	0.8	20.8	381
Project 33	12.5	F	100	5	31.6	10.7	11.7	0.9	21.3	337
Project 33	12.5	F	100	6	31.5	8.9	9.5	0.7	19.4	175
Project 33	12.5	F	100	7	32.5	7.3	8.3	0.4	18.3	45
Project 33	12.5	F	100	8	39.6	6.7	6.9	0.3	17.1	28
Project 33	12.5	F	100	9	41.0	8.6	9.5	0.8	19.4	182
Project 34	12.5	F	75	1	32.3	8.4	8.2	0.4	17.5	95
Project 34	12.5	F	75	2	32.0	7.7	7.3	0.2	16.7	27
Project 34	12.5	F	75	3	41.4	9.2	9.2	0.4	18.4	121
Project 34	12.5	F	75	4	46.5	6.3	6.8	0.5	16.6	64
Project 34	12.5	F	75	5	46.7	6.1	6.5	0.3	16.3	33
Project 34	12.5	F	75	6	52.5	8.2	8.6	0.9	18.2	156
Project 34	12.5	F	75	7	26.2	10.5	10.3	0.5	19.5	235
Project 34	12.5	F	75	8	22.5	10.5	10.3	0.3	19.5	252
Project 34	12.5	F	75	9	47.8	9.4	9.6	0.6	18.8	313
Project 35	19	F	95	1	47.5	7.9	7.8	0.2	17.0	2
Project 35	19	F	95	2	36.8	7.2	7.2	0.0	16.4	2
Project 35	19	F	95	3	37.3	10.7	10.1	0.4	19.1	29
Project 35	19	F	95	4	33.2	7.8	9.3	0.5	18.9	8
Project 35	19	F	95	5	17.7	8.4	8.2	0.6	17.9	9
Project 35	19	F	95	6	25.6	8.3	7.8	0.6	17.5	20

 Table E.1 (Continued) Permeability Data for Core Samples

Site	NMAS	Gradation	N _{des}	Core #.	Height	Voids	Voids	Water	VMA	Permeability
					(cm)	SSD (%)	Corelok (%)	Abs. (%)	Corelok (%)	(10 ⁻⁵ cm/sec)
Project 36	19	F	68	1	48.1	8.6	8.7	0.2	17.8	73
Project 36	19	F	68	2	51.9	9.5	9.0	0.3	18.0	132
Project 36	19	F	68	3	49.0	9.4	9.1	0.3	18.1	120
Project 36	19	F	68	4	57.8	4.2	3.5	0.1	13.6	1
Project 36	19	F	68	5	51.2	5.3	5.0	0.1	15.0	2
Project 36	19	F	68	6	32.9	6.9	6.7	0.1	16.5	15
Project 36	19	F	68	7	58.6	5.2	5.4	0.1	14.8	1
Project 36	19	F	68	8	59.1	5.2	5.3	0.1	14.7	1
Project 36	19	F	68	9	37.6	5.2	5.3	0.1	14.7	1
Project 37	19	F	96	1	47.9	7.2	7.2	0.1	17.0	9
Project 37	19	F	96	2	48.3	6.2	6.4	0.1	16.3	14
Project 37	19	F	96	3	51.2	6.2	6.2	0.1	16.2	4
Project 37	19	F	96	4	40.4	7.2	7.0	0.2	16.9	17
Project 37	19	F	96	5	49.8	7.1	7.1	0.2	16.9	11
Project 37	19	F	96	6	48.3	7.1	7.1	0.1	16.9	15
Project 37	19	F	96	7	48.6	7.1	7.0	0.1	16.7	11
Project 37	19	F	96	8	51.0	6.7	6.8	0.1	16.5	8
Project 37	19	F	96	9	52.7	7.6	7.9	0.2	17.5	21

 Table E.1 (Continued) Permeability Data for Core Samples

Site	NMAS	Gradation		Percent Passing on Sieve											
			19.0 mm	12.5 mm	9.5 mm	4.75 mm	2.36 mm	1.18 mm	0.6 mm	0.3 mm	0.15 mm	0.075 mm	Agg. Ratio		
Project 1	9.5	С	100.0	99.7	96.7	63.1	39.1	27.3	19.0	9.0	5.2	3.8	2.7		
Project 2	9.5	С	100.0	100.0	99.8	58.9	30.8	21.4	16.1	9.0	6.2	5.1	3.7		
Project 3	9.5	С	100.0	97.0	90.4	53.2	32.1	19.7	12.6	8.7	6.7	5.2	4.1		
Project 4	9.5	С	100.0	100.0	98.2	58.1	31.2	19.7	12.8	7.8	5.9	5.2	4.1		
Project 5	9.5	С	100.0	99.6	94.0	64.9	39.6	27.1	19.0	12.5	9.0	6.4	2.7		
Project 6	9.5	С	100.0	100.0	96.7	60.9	30.0	17.8	12.7	9.6	7.0	4.9	4.6		
Project 7	9.5	С	100.0	99.9	98.7	71.4	37.5	21.8	14.6	10.0	7.0	5.6	3.6		
Project 8	9.5	С	100.0	99.8	92.1	58.1	38.7	24.5	15.8	10.2	7.0	5.2	3.1		
Project 9	9.5	С	100.0	99.9	89.8	51.8	35.3	22.1	14.7	9.9	7.2	5.3	3.5		
Project 10	9.5	F	100.0	99.9	99.1	82.0	58.0	38.6	25.7	15.3	8.6	5.2	1.6		
Project 11	9.5	F	100.0	100.0	99.8	81.5	57.9	42.1	30.2	16.5	7.9	4.6	1.4		
Project 12	12.5	С	100.0	95.4	80.1	46.3	31.5	24.2	17.9	11.2	7.0	4.8	2.2		
Project 13	12.5	С	100.0	98.4	90.8	47.0	27.2	19.9	15.5	10.8	7.2	5.1	2.7		
Project 14	12.5	С	100.0	91.2	77.4	47.8	31.5	22.5	14.0	6.7	4.2	2.7	2.2		
Project 15	12.5	С	100.0	97.3	88.0	55.4	37.3	28.9	21.1	11.7	6.7	4.7	1.7		
Project 16	12.5	С	100.0	94.8	76.6	42.8	26.5	18.8	14.9	12.5	8.8	5.6	2.8		
Project 17	12.5	С	100.0	93.2	83.9	40.4	26.4	20.0	16.0	11.8	8.1	5.8	2.8		
Project 18	12.5	С	99.9	94.9	83.8	48.2	28.9	19.2	14.3	11.4	9.5	6.1	2.5		
Project 19	12.5	С	100.0	95.0	84.0	55.0	37.0	25.0	18.0	11.0	7.0	4.6	1.7		
Project 20	12.5	С	100.0	94.0	81.3	59.5	37.9	26.2	18.7	13.1	8.2	4.9	1.6		
Project 21	12.5	С	100.0	98.6	86.7	50.0	31.3	23.9	18.3	12.5	8.2	5.2	2.2		
Project 22	12.5	С	100.0	97.1	87.3	54.5	37.3	29.9	24.0	16.4	9.1	5.3	1.7		
Project 23	12.5	С	99.9	96.5	83.2	48.4	26.5	15.7	10.3	7.5	6.3	5.1	2.8		
Project 24	12.5	С	100.0	98.7	88.6	56.1	36.2	24.0	17.5	13.5	11.3	9.4	1.8		
Project 25	12.5	С	100.0	98.6	90.3	56.2	30.6	19.2	13.5	10.3	8.5	7.1	2.3		
Project 25	12.5	С	100.0	98.6	90.3	56.2	30.6	19.2	13.5	10.3	8.5	7.1	2.3		
Project 26	12.5	С	100.0	97.7	90.1	62.4	42.4	29.0	18.5	9.2	4.8	3.2	1.4		

Table E. 2 Information on Mix Gradation

Site	NMAS	Gradation		Percent Passing on Sieve										
			19.0 mm	12.5 mm	9.5 mm	4.75 mm	2.36 mm	1.18 mm	0.6 mm	0.3 mm	0.15 mm	0.075 mm	Agg. Ratio	
Project 27	12.5	F	100.0	96.4	87.6	63.3	44.7	33.0	24.3	16.2	10.2	6.4	1.2	
Project 28	12.5	F	100.0	96.0	85.8	60.5	40.4	28.3	19.4	11.8	7.0	4.3	1.5	
Project 29	12.5	F	100.0	95.5	84.6	55.3	41.7	33.0	24.4	16.2	9.4	5.5	1.4	
Project 30	12.5	F	99.8	94.0	88.2	76.4	51.4	29.8	18.0	9.3	5.4	3.9	0.9	
Project 31	12.5	F	99.6	93.3	87.5	77.6	55.5	34.4	20.6	9.4	4.6	2.9	0.8	
Project 32	12.5	F	99.2	94.8	89.2	70.6	48.6	33.5	23.2	14.9	9.7	6.1	1.1	
Project 33	12.5	F	100.0	96.2	81.8	53.0	40.9	31.2	23.3	10.4	4.9	3.7	1.4	
Project 34	12.5	F	100.0	99.1	88.7	61.5	43.5	29.5	20.4	13.1	7.4	4.7	1.3	
Project 35	19	F	99.6	88.5	80.1	69.0	52.3	39.2	26.9	16.1	9.7	6.0	0.4	
Project 36	19	F	100.0	87.0	74.6	57.2	41.8	31.3	23.8	16.9	10.9	7.3	0.7	
Project 37	19	F	99.9	94.5	87.8	70.6	49.5	33.3	23.5	13.9	7.7	5.1	0.4	

Table E. 2 (Continued) Information on Mix Gradation

TASK 3 – PART 3

APPENDIX A INFORMATION ON 40 SAMPLES FOR SATURATION TIME EXPERIMENT

Table A.1 Information on 40 Samples for Time Experiment

										Masses						
					Sub., 6	SSD, 6	Sub.,	SSD,								
Agg.	NMAS	Grad.	Gyr.	Dry (g)	sec (g)	sec (g)	10 sec	10 sec	15 sec	15 sec	20 sec	20 sec	30 sec	30 sec	60 sec	60 sec
Granite	9.5	ARZ	15	4419.6	2440.5	4438.4	2443.0	4440.5	2445.3	4441.2	2445.5	4442.8	2446.7	4443.7	2448.0	4444.5
Granite	9.5	BRZ	15	4499.5	2543.9	4575.2	2552.7	4581.7	2551.0	4578.0	2549.9	4577.1	2547.7	4571.5	2545.4	4568.3
Granite	9.5	SMA	15	4346.0	2398.0	4414.2	2394.5	4408.8	2391.0	4404.4	2389.7	4401.8	2389.5	4399.4	2386.1	4398.4
Granite	9.5	TRZ	15	4487.9	2529.5	4528.2	2531.4	4528.7	2532.3	4529.0	2533.8	4528.8	2535.0	4528.5	2534.9	4527.8
Granite	9.5	BRZ	50	4697.0	2701.2	4727.8	2701.5	4727.2	2701.6	4726.5	2700.8	4725.3	2701.2	4724.7	2700.7	4724.4
Granite	9.5	SMA	50	4539.1	2570.0	4555.2	2571.6	4554.0	2571.9	4552.7	2571.1	4551.8	2571.5	4551.7	2570.4	4550.4
Granite	9.5	TRZ	50	4692.9	2689.4	4709.0	2690.2	4710.9	2690.9	4711.9	2690.9	4712.3	2692.6	4713.6	2694.0	4713.8
Granite	9.5	ARZ	125	4803.9	2756.2	4805.3	2753.7	4805.8	2755.1	4805.8	2756.0	4806.1	2755.9	4806.4	2755.2	4806.4
Granite	9.5	BRZ	125	4849.3	2823.9	4862.6	2824.7	4861.4	2825.3	4861.4	2825.3	4860.1	2823.4	4860.4	2825.6	4859.8
Granite	12.5	SMA	15	4382.0	2447.4	4438.3	2447.7	4425.2	2441.9	4419.0	2442.3	4416.5	2443.6	4419.5	2445.4	4411.4
Granite	12.5	SMA	50	4562.8	2605.1	4592.6	2602.5	4590.3	2601.0	4587.3	2602.5	4585.4	2604.0	4583.8	2602.0	4584.4
Granite	19.0	BRZ	15	4586.9	2627.3	4638.3	2621.4	4633.6	2620.6	4629.6	2623.9	4630.0	2620.7	4626.9	2620.9	4623.9
Granite	19.0	SMA	15	4398.2	2499.3	4479.6	2500.9	4462.7	2498.7	4463.7	2499.6	4459.6	2502.0	4451.7	2499.1	4452.1
Granite	19.0	BRZ	50	4784.6	2797.4	4810.9	2800.5	4808.3	2800.0	4806.9	2798.6	4805.0	2799.0	4805.1	2798.5	4803.7
Granite	19.0	ARZ	125	4889.6	2867.7	4901.6	2868.5	4900.3	2867.7	4899.5	2866.5	4900.0	2867.2	4898.0	2867.8	4899.8
Granite	19.0	SMA	125	4752.3	2784.4	4762.5	2783.2	4760.6	2782.9	4762.1	2783.2	4760.0	2784.4	4760.0	2784.3	4759.3
Granite	37.5	BRZ	15	4397.4	2595.4	4467.8	2597.2	4468.6	2596.6	4453.3	2585.0	4452.6	2586.2	4437.8	2585.4	4430.8
Granite	37.5	BRZ	50	4735.4	2811.6	4792.7	2808.0	4790.0	2808.4	4787.0	2812.8	4782.6	2809.9	4779.8	2810.9	4780.2
Granite	37.5	TRZ	125	4967.6	2958.6	5000.2	2960.5	5003.3	2962.0	5003.5	2964.2	5002.5	2962.3	5005.8	2963.9	5002.4
Limestone	9.5	ARZ	15	4517.5	2539.9	4542.9	2552.0	4553.2	2557.7	4557.5	2562.0	4560.4	2565.2	4562.5	2567.7	4564.8
Limestone	9.5	BRZ	15	4590.2	2612.0	4674.3	2616.8	4674.4	2618.8	4673.1	2618.6	4674.2	2616.8	4669.7	2614.2	4665.2
Limestone	9.5	SMA	15	4462.5	2517.4	4525.1	2518.7	4521.0	2517.5	4517.1	2512.4	4511.8	2514.3	4513.7	2512.4	4512.6
Limestone	9.5	TRZ	15	4619.1	2662.0	4685.3	2676.8	4697.4	2676.2	4696.3	2674.9	4695.0	2674.8	4693.2	2673.8	4689.4
Limestone	9.5	BRZ	50	4795.4	2781.1	4826.8	2784.2	4828.1	2786.0	4828.1	2786.7	4827.9	2784.9	4828.5	2786.4	4827.3
Limestone	9.5	TRZ	50	4825.3	2839.8	4850.1	2839.4	4850.3	2839.4	4851.6	2840.9	4851.7	2840.2	4851.3	2840.4	4851.1
Limestone	9.5	ARZ	125	4872.9	2849.2	4875.6	2849.9	4875.8	2848.8	4876.2	2850.2	4876.0	2851.3	4876.8	2850.5	4876.8
Limestone	9.5	BRZ	125	4953.7	2932.7	4967.2	2931.7	4965.7	2933.4	4965.0	2931.4	4965.4	2932.1	4964.2	2931.1	4964.4
Limestone	9.5	SMA	125	4829.5	2869.8	4831.7	2870.8	4832.0	2871.6	4832.4	2872.2	4832.3	2871.2	4831.8	2871.7	4831.7
Limestone	12.5	SMA	15	4392.6	2461.6	4438.4	2461.9	4434.2	2461.4	4431.4	2462.1	4432.6	2458.0	4427.5	2458.2	4426.3
Limestone	12.5	SMA	50	4588.0	2631.7	4600.1	2631.4	4598.3	2632.8	4597.8	2633.0	4597.2	2634.2	4596.0	2634.5	4595.7
Limestone	19.0	ARZ	15	4650.2	2696.2	4688.2	2698.1	4690.5	2699.9	4691.7	2702.0	4692.4	2703.0	4693.2	2703.8	4692.8
Limestone	19.0	BRZ	15	4601.5	2639.1	4669.2	2637.4	4664.6	2636.6	4660.9	2635.5	4657.8	2635.5	4654.6	2632.6	4652.7
Limestone	19.0	SMA	15	4409.3	2539.4	4474.8	2530.1	4471.8	2530.2	4465.1	2526.2	4458.9	2533.4	4461.3	2528.2	4456.7
Limestone	19.0	SMA	50	4662.1	2724.1	4679.0	2722.2	4677.9	2722.4	4677.1	2722.5	4675.3	2722.3	4673.4	2721.9	4674.3
Limestone	19.0	ARZ	125	5014.9	2996.4	5020.3	2996.8	5020.4	2997.6	5021.2	2997.3	5020.8	2997.7	5020.5	2998.3	5020.5
Limestone	19.0	BRZ	125	4963.1	2964.4	4975.2	2965.7	4976.1	2967.4	4974.0	2966.2	4974.7	2964.8	4976.6	2967.4	4973.6
Limestone	37.5	TRZ	50	4904.4	2953.6	4959.8	2950.5	4957.7	2951.7	4955.4	2950.6	4951.2	2949.9	4950.3	2953.3	4942.0
Limestone	37.5	ARZ	125	5074.1	3059.9	5092.2	3057.5	5092.0	3057.1	5092.1	3059.1	5090.9	3057.3	5090.0	3056.9	5089.1
Limestone	37.5	BRZ	125	5041.3	3058.4	5076.3	3061.5	5075.4	3062.5	5070.7	3059.6	5068.9	3060.5	5067.7	3060.1	5067.1
Limestone	37.5	TRZ	125	5085.6	3085.6	5115.5	3087.7	5112.8	3086.2	5111.9	3088.2	5112.6	3087.1	5113.3	3089.3	5109.1

				G_{mb} at 6	G _{mb} at				
Agg.	NMAS	Grad.	Gyr.	S	10 s	15 s	20 s	30 s	60 s
Granite	9.5	ARZ	15	2.212	2.213	2.214	2.213	2.213	2.214
Granite	9.5	BRZ	15	2.215	2.218	2.220	2.220	2.223	2.224
Granite	9.5	SMA	15	2.156	2.158	2.159	2.160	2.162	2.160
Granite	9.5	TRZ	15	2.245	2.247	2.248	2.250	2.251	2.252
Granite	9.5	BRZ	50	2.318	2.319	2.320	2.320	2.321	2.321
Granite	9.5	SMA	50	2.286	2.290	2.292	2.292	2.292	2.292
Granite	9.5	TRZ	50	2.324	2.322	2.322	2.322	2.322	2.323
Granite	9.5	ARZ	125	2.344	2.341	2.343	2.343	2.343	2.342
Granite	9.5	BRZ	125	2.379	2.381	2.382	2.383	2.381	2.384
Granite	12.5	SMA	15	2.201	2.216	2.216	2.220	2.218	2.229
Granite	12.5	SMA	50	2.296	2.295	2.297	2.301	2.305	2.302
Granite	19.0	BRZ	15	2.281	2.280	2.283	2.286	2.286	2.290
Granite	19.0	SMA	15	2.221	2.242	2.238	2.244	2.256	2.252
Granite	19.0	BRZ	50	2.376	2.383	2.384	2.385	2.385	2.386
Granite	19.0	ARZ	125	2.404	2.407	2.407	2.405	2.408	2.406
Granite	19.0	SMA	125	2.402	2.403	2.401	2.404	2.405	2.406
Granite	37.5	BRZ	15	2.349	2.350	2.368	2.355	2.375	2.383
Granite	37.5	BRZ	50	2.390	2.389	2.393	2.404	2.404	2.405
Granite	37.5	TRZ	125	2.433	2.432	2.433	2.437	2.431	2.437
Limestone	9.5	ARZ	15	2.255	2.257	2.259	2.261	2.262	2.262
Limestone	9.5	BRZ	15	2.226	2.231	2.234	2.233	2.236	2.238
Limestone	9.5	SMA	15	2.223	2.229	2.232	2.232	2.232	2.231
Limestone	9.5	TRZ	15	2.283	2.286	2.287	2.287	2.288	2.292
Limestone	9.5	BRZ	50	2.344	2.346	2.348	2.349	2.347	2.350
Limestone	9.5	TRZ	50	2.400	2.400	2.398	2.400	2.399	2.400
Limestone	9.5	ARZ	125	2.405	2.405	2.404	2.405	2.406	2.405
Limestone	9.5	BRZ	125	2.435	2.435	2.438	2.435	2.438	2.436
Limestone	9.5	SMA	125	2.462	2.463	2.463	2.464	2.463	2.464
Limestone	12.5	SMA	15	2.222	2.227	2.230	2.229	2.230	2.232
Limestone	12.5	SMA	50	2.331	2.333	2.335	2.336	2.339	2.339
Limestone	19.0	ARZ	15	2.334	2.334	2.335	2.336	2.337	2.338
Limestone	19.0	BRZ	15	2.267	2.270	2.273	2.275	2.279	2.278
Limestone	19.0	SMA	15	2.278	2.271	2.279	2.281	2.287	2.286
Limestone	19.0	SMA	50	2.385	2.384	2.385	2.387	2.389	2.388
Limestone	19.0	ARZ	125	2.478	2.478	2.478	2.478	2.479	2.480
Limestone	19.0	BRZ	125	2.468	2.469	2.473	2.471	2.467	2.474
Limestone	37.5	TRZ	50	2.445	2.443	2.448	2.451	2.452	2.466
Limestone	37.5	ARZ	125	2.497	2.494	2.493	2.497	2.496	2.497
Limestone	37.5	BRZ	125	2.498	2.503	2.510	2.509	2.512	2.512
Limestone	37.5	TRZ	125	2.505	2.511	2.511	2.512	2.510	2.518

 Table A.2 Information on 40 Samples for Time Experiment

				Absorb.	Absorb.	Absorb.	Absorb.	Absorb.	Absorb.
Agg.	NMAS	Grad.	Gyr.	At 6 s	At 10 s	At 15 s	At 20 s	At 30 s	At 60 s
Granite	9.5	ARZ	15	0.94	1.05	1.08	1.16	1.21	1.25
Granite	9.5	BRZ	15	3.73	4.05	3.87	3.83	3.56	3.40
Granite	9.5	SMA	15	3.38	3.12	2.90	2.77	2.66	2.60
Granite	9.5	TRZ	15	2.02	2.04	2.06	2.05	2.04	2.00
Granite	9.5	BRZ	50	1.52	1.49	1.46	1.40	1.37	1.35
Granite	9.5	SMA	50	0.81	0.75	0.69	0.64	0.64	0.57
Granite	9.5	TRZ	50	0.80	0.89	0.94	0.96	1.02	1.03
Granite	9.5	ARZ	125	0.07	0.09	0.09	0.11	0.12	0.12
Granite	9.5	BRZ	125	0.65	0.59	0.59	0.53	0.54	0.52
Granite	12.5	SMA	15	2.83	2.18	1.87	1.75	1.90	1.50
Granite	12.5	SMA	50	1.50	1.38	1.23	1.14	1.06	1.09
Granite	19.0	BRZ	15	2.56	2.32	2.13	2.15	1.99	1.85
Granite	19.0	SMA	15	4.11	3.29	3.33	3.13	2.74	2.76
Granite	19.0	BRZ	50	1.31	1.18	1.11	1.02	1.02	0.95
Granite	19.0	ARZ	125	0.59	0.53	0.49	0.51	0.41	0.50
Granite	19.0	SMA	125	0.52	0.42	0.50	0.39	0.39	0.35
Granite	37.5	BRZ	15	3.76	3.80	3.01	2.96	2.18	1.81
Granite	37.5	BRZ	50	2.89	2.75	2.61	2.40	2.25	2.27
Granite	37.5	TRZ	125	1.60	1.75	1.76	1.71	1.87	1.71
Limestone	9.5	ARZ	15	1.27	1.78	2.00	2.15	2.25	2.37
Limestone	9.5	BRZ	15	4.08	4.09	4.04	4.09	3.87	3.66
Limestone	9.5	SMA	15	3.12	2.92	2.73	2.47	2.56	2.50
Limestone	9.5	TRZ	15	3.27	3.88	3.82	3.76	3.67	3.49
Limestone	9.5	BRZ	50	1.53	1.60	1.60	1.59	1.62	1.56
Limestone	9.5	TRZ	50	1.23	1.24	1.31	1.31	1.29	1.28
Limestone	9.5	ARZ	125	0.13	0.14	0.16	0.15	0.19	0.19
Limestone	9.5	BRZ	125	0.66	0.59	0.56	0.58	0.52	0.53
Limestone	9.5	SMA	125	0.11	0.13	0.15	0.14	0.12	0.11
Limestone	12.5	SMA	15	2.32	2.11	1.97	2.03	1.77	1.71
Limestone	12.5	SMA	50	0.61	0.52	0.50	0.47	0.41	0.39
Limestone	19.0	ARZ	15	1.91	2.02	2.08	2.12	2.16	2.14
Limestone	19.0	BRZ	15	3.33	3.11	2.93	2.78	2.63	2.53
Limestone	19.0	SMA	15	3.38	3.22	2.88	2.57	2.70	2.46
Limestone	19.0	SMA	50	0.86	0.81	0.77	0.68	0.58	0.62
Limestone	19.0	ARZ	125	0.27	0.27	0.31	0.29	0.28	0.28
Limestone	19.0	BRZ	125	0.60	0.65	0.54	0.58	0.67	0.52
Limestone	37.5	TRZ	50	2.76	2.66	2.55	2.34	2.29	1.89
Limestone	37.5	ARZ	125	0.89	0.88	0.88	0.83	0.78	0.74
Limestone	37.5	BRZ	125	1.73	1.69	1.46	1.37	1.32	1.29
Limestone	37.5	TRZ	125	1.47	1.34	1.30	1.33	1.37	1.16

Table A.3 Information on 40 Samples for Time Experiment

				Air Voids					
Agg.	NMAS	Grad.	Gyr.	at 6 s	at 10 s	at 15 s	at 20 s	at 30 s	at 60 s
Granite	9.5	ARZ	15	9.52	9.51	9.43	9.50	9.48	9.46
Granite	9.5	BRZ	15	10.97	10.87	10.78	10.79	10.64	10.60
Granite	9.5	SMA	15	16.16	16.08	16.04	15.99	15.90	16.00
Granite	9.5	TRZ	15	9.61	9.54	9.51	9.44	9.37	9.34
Granite	9.5	BRZ	50	6.85	6.80	6.77	6.75	6.70	6.71
Granite	9.5	SMA	50	5.98	5.85	5.78	5.77	5.75	5.74
Granite	9.5	TRZ	50	6.45	6.51	6.52	6.54	6.52	6.46
Granite	9.5	ARZ	125	4.11	4.25	4.19	4.16	4.18	4.21
Granite	9.5	BRZ	125	4.40	4.30	4.27	4.21	4.32	4.18
Granite	12.5	SMA	15	9.53	8.92	8.90	8.77	8.85	8.39
Granite	12.5	SMA	50	5.64	5.66	5.58	5.42	5.27	5.40
Granite	19.0	BRZ	15	9.92	9.97	9.83	9.70	9.70	9.56
Granite	19.0	SMA	15	9.57	8.72	8.87	8.63	8.15	8.31
Granite	19.0	BRZ	50	6.15	5.88	5.84	5.82	5.80	5.76
Granite	19.0	ARZ	125	4.22	4.12	4.12	4.20	4.07	4.13
Granite	19.0	SMA	125	2.18	2.15	2.23	2.12	2.06	2.03
Granite	37.5	BRZ	15	8.65	8.60	7.88	8.42	7.63	7.32
Granite	37.5	BRZ	50	7.03	7.07	6.91	6.50	6.50	6.47
Granite	37.5	TRZ	125	4.80	4.86	4.80	4.65	4.89	4.66
Limestone	9.5	ARZ	15	9.75	9.67	9.60	9.54	9.49	9.48
Limestone	9.5	BRZ	15	12.37	12.17	12.03	12.09	11.97	11.89
Limestone	9.5	SMA	15	10.63	10.39	10.27	10.26	10.26	10.29
Limestone	9.5	TRZ	15	10.61	10.49	10.47	10.47	10.40	10.27
Limestone	9.5	BRZ	50	7.71	7.63	7.55	7.51	7.62	7.49
Limestone	9.5	TRZ	50	6.02	6.05	6.11	6.04	6.06	6.04
Limestone	9.5	ARZ	125	3.77	3.75	3.82	3.74	3.73	3.77
Limestone	9.5	BRZ	125	4.14	4.12	4.00	4.12	4.03	4.08
Limestone	9.5	SMA	125	1.02	0.98	0.96	0.93	0.95	0.92
Limestone	12.5	SMA	15	8.89	8.69	8.58	8.60	8.56	8.49
Limestone	12.5	SMA	50	4.44	4.36	4.27	4.23	4.11	4.08
Limestone	19.0	ARZ	15	9.20	9.22	9.19	9.13	9.12	9.06
Limestone	19.0	BRZ	15	11.01	10.88	10.75	10.66	10.52	10.57
Limestone	19.0	SMA	15	8.72	9.02	8.70	8.60	8.37	8.40
Limestone	19.0	SMA	50	4.45	4.49	4.44	4.35	4.27	4.33
Limestone	19.0	ARZ	125	3.62	3.61	3.61	3.60	3.57	3.54
Limestone	19.0	BRZ	125	3.09	3.07	2.89	2.98	3.14	2.87
Limestone	37.5	TRZ	50	6.91	6.95	6.79	6.65	6.64	6.09
Limestone	37.5	ARZ	125	4.12	4.22	4.25	4.10	4.14	4.11
Limestone	37.5	BRZ	125	4.90	4.71	4.44	4.49	4.39	4.38
Limestone	37.5	TRZ	125	4.59	4.37	4.40	4.34	4.42	4.12

Table A.4 Information on 40 Samples for Time Experiment

TASK 5

APPENDIX A

Project 1:

Project 1 was evaluated on May 21, 2002 and consisted of the 38.1mm overlay of an existing HMA pavement in the eastbound lane of a two-lane county highway. The mix consisted of a 9.5mm nominal maximum aggregate size fine-graded blend designed at an N_{design} of 65 gyrations resulting in a design asphalt content of 5.8 percent. The asphalt binder that was used was a PG 70-22. A liquid anti-stripping agent was used at a rate of 0.5 percent. The weather conditions during paving were approximately 70°F, overcast, with a light drizzle throughout the day. The design and gradation information are provided in Tables A1 and A2.

The project was located approximately 25 miles from the CMI drum plant. Dump trucks fed the mix to the Ingersoll Rand PF-200 paver. Breakdown and intermediate rolling were both conducted using the same Ingersoll Rand DD90 roller. Breakdown rolling was operated in high amplitude and frequency, with the roller typically making 2 to 3 passes over the mat at a temperature of about 265°F, with the mat being laid at a temperature of about 310°F. Intermediate rolling was performed in static mode with the paver making 2 to 3 passes at a temperature of approximately 210°F. A separate Ingersoll Rand DD90 static steel-wheel roller in static mode performed finish rolling, starting at a pavement temperature of about 170°F, making about 3 passes over the mat.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mixture are provided in Tables A3-A7.

Table A1: Project 1 Mix Design Summary											
Information JMF I.D. Number: 2024-02-13											
JMF I.D. Number:	2024-02-13										
Date(s) on Project:	5/21/02										
Number of Stockpiles Used:	5										
- Coarse Aggregate Angularity:	100% 2+ crushed faces										
- Fine Aggregate Angularity:	48.6										
Percent RAP:	15										
Gradation:	9.5mm Fine Graded										
N _{initial} , N _{design} , N _{max} :	7, 65, NA										
Type Asphalt Binder Used:	PG 70-22										
Design Asphalt Binder Content:	5.8										
Type Modifier Used:	NA										
Type Anti-Strip Additive Used:	Liquid Adhere HP+										
Percent Anti-Strip Used:	0.5										
Design Voids in Total Mix:	3.86										
Design Voids in Mineral Aggregate:	16.2										
Design Voids Filled with Asphalt:	76										
Tensile Strength Ratio:	0.84										
Dust/Asphalt Ratio:	1.0										

Table A2: Design Gradation for Project 1 Size Size Recommended Limits												
Sieve Size	Sieve Size, mm	Recommended Limits from Job Mix	Percent Passing									
11/2 in.	37.5		100									
1 in.	25.0		100									
³ ⁄4 in.	19.0		100									
½ in.	12.5	100	100									
3/8 in	9.5	90-100	94.5									
No. 4	4.75	90 max	64.7									
No. 8	2.36	38-67	52.6									
No. 16	1.18		39.2									
No. 30	0.6		29.6									
No. 50	0.3		15.7									
No. 100	0.15		8.0									
No. 200	0.075	2-10	4.8									

Table A3:	Results of S	GC Compact	ions											Ndesign = 65
Project:	1	-												Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (G	ise):	Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 9.5mm Fine				9/4/2003
AC Sp. Gr. (C	Gb) =			2.771		2.752		2.732	_					
		1.028												
				Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		-
Sample	Specimen	Asphalt Contant	In Air	In Water		Bulk	TMD	Aggregate	AC by					Eff. AC
Number	Number	Asphan Content	(ama)	(ama)	SSD (gms)	(Cmb)	(Cmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(gnis)	(gnis)		(GIIID)	(Gillin)	сс	%	pcf				%
1	1	5.3	4895.6	2849.0	4900.0	2.387	2.527	82.7	12.3	148.9	5.5	17.3	67.9	5.0
1	2	5.3	4905.0	2864.7	4913.2	2.394	2.527	83.0	12.3	149.4	5.2	17.0	69.1	5.0
1	3	5.3	4908.0	2865.7	4916.0	2.394	2.527	83.0	12.3	149.4	5.3	17.0	69.0	5.0
2	1	5.8	4892.5	2868.1	4894.4	2.414	2.510	83.3	13.6	150.7	3.8	16.7	77.3	5.5
2	2	5.8	4895.9	2873.5	4898.3	2.418	2.510	83.4	13.6	150.9	3.7	16.6	77.9	5.5
2	3	5.8	4892.7	2871.5	4895.2	2.418	2.510	83.4	13.6	150.9	3.7	16.6	77.9	5.5
Input By:													Checked By:	
SSD = Saturated Surface Dry cc = cubic centimeter							VMA = Voids in Mineral Aggregate							
TMD = Theoretical Maximum Density AC = Asphalt Cement						VFA = Voids Filled With Asphalt Cement								
gm = gram				pcf = pounds	per cubic foot	foot VTM = Voids in Total Mix								

Table A3: Results of SGC Compaction

Table A4:	Results of	Height Sam	ple SGC Compa	actions							1	Ndesign = 65
Project:	1											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 9.5mm Fine			9/4/2003
AC Sp. Gr. (Gb) =											
		1.028	8 2.771		2.752		2.732		-		-	
				Masses		SPECIF	IC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	5.3	1628.4	932.4	1631.3	2.330	2.527	12.0	7.8	9.2	8	5.0
1	2	5.3	1622.4	929.4	1624.7	2.333	2.527	12.0	7.7	8.3	11	5.0
1	3	5.3	1526.3	871.9	1529.8	2.320	2.527	12.0	8.2	9.9	37	5.0
1	4	5.3	1524.4	872.0	1528.7	2.321	2.527	12.0	8.1	9.8	52	5.0
1	5	5.3	1486.5	836.6	1493.3	2.264	2.527	11.7	10.4	11.9	142	5.0
1	6	5.3	1484.5	832.0	1490.4	2.255	2.527	11.6	10.8	14.8	142	5.0
1	7	5.3	1446.2	801.3	1453.9	2.216	2.527	11.4	12.3	14.2	521	5.0
1	8	5.3	1444.1	796.7	1451.6	2.205	2.527	11.4	12.7	14.2	347	5.0
2	1	5.8	1585.7	914.2	1588.6	2.351	2.510	13.3	6.3	7.2	0	5.5
2	2	5.8	1590.9	915.6	1592.2	2.351	2.510	13.3	6.3	7.3	0	5.5
2	3	5.8	1488.7	836.2	1493.3	2.266	2.510	12.8	9.7	10.9	121	5.5
2	4	5.8	1489.7	835.2	1493.9	2.262	2.510	12.8	9.9	11.3	87	5.5
2	5	5.8	1467.4	817.2	1473.3	2.237	2.510	12.6	10.9	12.4	238	5.5
2	6	5.8	1467.5	814.4	1472.2	2.231	2.510	12.6	11.1	16.1	141	5.5
2	7	5.8	1439.0	790.3	1444.6	2.199	2.510	12.4	12.4	13.7	260	5.5
2	8	5.8	1435.9	793.1	1444.6	2.204	2.510	12.4	12.2	11.2	388	5.5
Input By:												
SSD = Saturated Surface Dry cc = cubic centimeter												
TMD = Theo	retical Maximu	um Density		AC = Aspha	It Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradation		Sample 1						Sample 2					Overall	
Sieve Size (mm)	Sieve^0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.00	100.00	100.00	100.00	0.0	100.00	100.00	100.00	100.00	0.0	100.00	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
19	3.76	100	100	100	100.0	0.0	100	100	100	100.0	0.0	100.0	0.00	100.0
12.5	3.12	99.7	100	100	99.9	0.2	100	99.6	100	99.9	0.2	99.9	0.02	100.0
9.5	2.75	95.1	97	94.7	95.6	1.2	94.9	94.3	94.4	94.5	0.3	95.1	0.75	94.5
4.75	2.02	68.3	70.9	67.3	68.8	1.9	67.6	66.4	66.6	66.9	0.6	67.9	1.39	64.7
2.36	1.47	51.8	53.5	50.6	52.0	1.5	52.8	51.5	51.8	52.0	0.7	52.0	0.05	52.6
1.18	1.08	38.6	39.4	37.8	38.6	0.8	39.4	38.6	38.9	39.0	0.4	38.8	0.26	39.2
0.6	0.8	30.3	30.7	29.8	30.3	0.5	30.6	30.2	30.3	30.4	0.2	30.3	0.07	29.6
0.3	0.58	17.3	17.5	17.2	17.3	0.2	16.7	16.6	16.7	16.7	0.1	17.0	0.47	15.7
0.15	0.43	9.1	9.2	9.1	9.1	0.1	8.5	8.5	8.6	8.5	0.1	8.8	0.42	8.0
0.075	0.31	5.5	5.6	5.4	5.5	0.1	5.1	5.2	5.2	5.2	0.1	5.3	0.24	4.8
			Sam	ple 1			Sample 2					Overall		
Asphalt Content		Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		5.20	5.50	5.20	5.30	0.17	5.70	5.80	5.70	5.73	0.06	5.52	0.31	5.80

Table A5: Gradations and Asphalt Contents per Sublot

Test	Salem #8		
Bulk / Apparent Specific Gravit	2.673/2.728		
Absorption, %	1.15		
LA Abrasion, % Loss	15.3		
Flat and Elongated, %			
3 to 1			
5 to 1	2.5		
Coarse Aggregate Flow, %	47.4		
Crushed Content, %			
One Face	100		
Two+ Faces	100		
Data provided by either the age	ncy or determi	ined at NCAT	lab

Table A6: Coarse Aggregate Properties for Project 1

Table A7: Fine Aggregate Properties for Project 1

		J					
Test	Marti #34	S&R #10	BR Sand	Castle Sand	RAP		
Bulk / Apparent Specific Gravi	2.825/2.843	2.762/2.847	2.665/2.711	2.618/2.660	2.612/2.669		
Absorption, %	0.49	1.57	1.8	0.89	0.51		
Fine Aggregate Angularity, %	51.7	46.6	45.3	46.4	45.2		
Sand Equivalent 96 85 76 76 86							
Data provided by either the age	ncy or determi	ined at NCAT	lab				

Project 2

Project 2 was evaluated on May 22, 2002 and consisted of the placement of 63.5mm new hot mix asphalt (HMA) in the construction of a new highway. The mix consisted of a 19.0mm nominal maximum aggregate size limestone/sand/RAP coarsegraded blend designed at an N_{design} of 65 gyrations resulting in a design asphalt content of 5.3 percent. The asphalt binder that was used was a PG 64-22. A liquid anti-stripping agent was used at a rate of 0.5 percent. The weather conditions during paving were approximately 60°F, sunny, with a light wind. The mix design and gradation information are provided in Tables A8 and A9.

The project was located approximately 5 miles from the drum plant. Dump trucks fed the mix to the Ingersoll Rand PF-3200 paver. Breakdown rolling was conducted using an Ingersoll Rand DD110 HF roller, which started compaction when the mat had cooled to a temperature of approximately 260°F. The mat was laid at a temperature of about 300°F. Maximum amplitude and frequency were used during breakdown rolling with the roller making four to five passes over the mat. Finish rolling was started at approximately 185°F and was performed using an Ingersoll Rand DD90 HF roller operating in static mode making four to five passes

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A10-A14.

Table A8: Project 2 Mix Design Summary									
Inform	nation								
JMF I.D. Number:	2025-02-08								
Date(s) on Project:	5/22/02								
Number of Stockpiles Used:	3								
- Coarse Aggregate Angularity:	100% 2+ crushed faces								
- Fine Aggregate Angularity:	45.5								
Percent RAP:	15								
Gradation:	19.0mm Coarse Graded								
Ninitial, Ndesign, Nmax:	7, 65, NA								
Type Asphalt Binder Used:	PG 64-22								
Design Asphalt Binder Content:	5.3								
Type Modifier Used:	NA								
Type Anti-Strip Additive Used:	Liquid Adhere HP+								
Percent Anti-Strip Used:	0.5								
Design Voids in Total Mix:	4.16								
Design Voids in Mineral Aggregate:	16.2								
Design Voids Filled with Asphalt:	74								
Tensile Strength Ratio:	0.90								
Dust/Asphalt Ratio:	1.0								

Table A9: Design Gradation for Project 2												
Sieve Size	Sieve Size, mm	Recommended Limits From JMF	Percent Passing									
11/2 in.	37.5		100									
1 in.	25.0	100	100									
³ / ₄ in.	19.0	90-100	99.6									
¹ / ₂ in.	12.5	90 max	88.9									
3/8 in	9.5		76.8									
No. 4	4.75		52.2									
No. 8	2.36	28-49	30.3									
No. 16	1.18		19.3									
No. 30	0.6		14.1									
No. 50	0.3		8.2									
No. 100	0.15		5.9									
No. 200	0.075	2-8	4.6									

Table A10	: Results f	rom SGC Co	ompaction	5										Ndesign = 65
Project:	2													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descrip	tion: 19.0mm C	Coarse			9/4/2003
AC Sp. Gr. (Gb) =			2.832		2.795		2.765						
		1.028												
				Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	88D	Pulk	TMD	Aggregate	AC by					Eff. AC
Number	Number	Content	(ama)		(ama)	Duik (Cmb)	(Cmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(gms)	(gnis)	(gms)	(GIID)	(Gmm)	сс	%	pcf				%
1	1	4.7	4949.2	2947.9	4960.5	2.459	2.593	84.8	11.2	153.4	5.2	15.2	66.1	4.3
1	2	4.7	4951.1	2970.6	4960.0	2.489	2.593	85.8	11.4	155.3	4.0	14.2	71.7	4.3
1	3	4.7	4951.1	2966.2	4959.6	2.484	2.593	85.6	11.4	155.0	4.2	14.4	70.7	4.3
2	1	4.7	4944.7	2958.0	4955.3	2.476	2.580	85.3	11.3	154.5	4.0	14.7	72.4	4.3
2	2	4.7	4925.5	2938.3	4935.7	2.466	2.580	85.0	11.3	153.9	4.4	15.0	70.5	4.3
2	3	4.7	4937.3	2946.5	4946.0	2.469	2.580	85.1	11.3	154.1	4.3	14.9	71.2	4.3
Input By:													Checked By	:
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter		VMA = Voids in Mineral Aggregate							
TMD = Theo	retical Maxim	um Density		AC = Aspha	lt Cement		VFA = Voids Filled With Asphalt Cement							
am = gram				pcf = pounds	s per cubic for	ot	VTM = Voids in Total Mix							

A 4 6 1 -

Table A11	: Results o	of Height Sa	mple SGC Comp	pactions							1	Ndesign = 65
Project:	2											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 19.0mm Coar	se		9/4/2003
AC Sp. Gr. (Gb) =											
		1.028	3		2.795		2.765				-	
				Masses	•	SPECIFIC GRAVITIES			VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	4.7	2456.8	1464.0	2463.4	2.458	2.593	11.2	5.2	6.8	0	4.3
1	2	4.7	2447.8	1464.0	2452.7	2.476	2.593	11.3	4.5	5.9	0	4.3
1	3	4.7	2347.6	1395.6	2353.9	2.450	2.593	11.2	5.5	7.0	0	4.3
1	4	4.7	2339.2	1388.3	2346.1	2.442	2.593	11.2	5.8	7.3	0	4.3
1	5	4.7	2299.6	1359.7	2311.3	2.417	2.593	11.0	6.8	8.5	0	4.3
1	6	4.7	2304.9	1361.7	2313.4	2.422	2.593	11.1	6.6	8.4	0	4.3
1	7	4.7	2261.2	1324.6	2280.0	2.367	2.593	10.8	8.7	11.1	753	4.3
1	8	4.7	2263.8	1324.8	2275.8	2.380	2.593	10.9	8.2	10.1	131	4.3
2	1	4.7	2361.6	1412.8	2367.0	2.475	2.580	11.3	4.1	5.7	0	4.3
2	2	4.7	2363.6	1402.5	2370.9	2.441	2.580	11.2	5.4	7.1	0	4.3
2	3	4.7	2270.0	1332.5	2283.0	2.388	2.580	10.9	7.4	15.2	0	4.3
2	4	4.7	2270.4	1335.4	2282.2	2.398	2.580	11.0	7.1	9.9	0	4.3
2	5	4.7	2224.5	1307.3	2239.5	2.386	2.580	10.9	7.5	12.6	135	4.3
2	6	4.7	2236.5	1302.7	2258.0	2.341	2.580	10.7	9.3	11.4	405	4.3
2	7	4.7	2178.3	1274.2	2210.5	2.326	2.580	10.6	9.8	24.3	1941	4.3
2	8	4.7	2158.3	1260.5	2190.3	2.321	2.580	10.6	10.0	13.0	1942	4.3
Input By:												
SSD = Satur	SSD = Saturated Surface Dry cc = cubic centimeter											
TMD = Theo	TMD = Theoretical Maximum Density AC = Asphalt Cement											
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	Sample 1					Sample 2					Overall			
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.00	0.0	100.0	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	99.6
12.5	3.12	89.2	84.4	91.1	88.2	3.5	85.4	89.0	87.8	87.4	1.8	87.8	0.59	88.9
9.5	2.75	74.4	68.1	75.5	72.7	4.0	68.2	70.9	71.5	70.2	1.8	71.4	1.74	76.8
4.75	2.02	44.0	39.0	42.9	42.0	2.6	39.2	40.7	41.1	40.3	1.0	41.2	1.15	52.2
2.36	1.47	28.2	25.7	27.5	27.1	1.3	25.3	25.9	25.8	25.7	0.3	26.4	1.04	30.3
1.18	1.08	20.9	19.6	20.6	20.4	0.7	18.5	18.8	18.7	18.7	0.2	19.5	1.20	19.3
0.6	0.8	15.9	15.0	15.7	15.5	0.5	14.1	14.5	14.4	14.3	0.2	14.9	0.85	14.1
0.3	0.58	9.6	8.9	9.5	9.3	0.4	8.3	8.7	8.6	8.5	0.2	8.9	0.57	8.2
0.15	0.43	6.8	6.4	6.7	6.6	0.2	5.9	6.2	6.1	6.1	0.2	6.4	0.40	5.9
0.075	0.31	5.5	5.2	5.5	5.4	0.2	4.8	5.2	5.1	5.0	0.2	5.2	0.26	4.6
		Sample 1					Sample 2					Overall		
Asphalt Content		Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		4.90	4.50	4.80	4.73	0.21	4.80	4.70	4.60	4.70	0.10	4.72	0.02	5.3

Table A12: Gradations and Asphalt Contents

		5
Test	#68's	
Bulk / Apparent Specific Gravit	2.798/2.862	
Absorption, %	0.8	
LA Abrasion, % Loss	16.6	
Flat and Elongated, %		
3 to 1		
5 to 1	0.7	
Coarse Aggregate Flow, %	44.6	
Crushed Content, %		
One Face	100	
Two+ Faces	100	
Data provided by either the age	ncy or determi	ined at NCAT lab

Table A13: Coarse Aggregate Properties for Project 2

Table A14: Fine Aggregate Properties for Project 2

	1					
Test	#10's	Conc. Sand	RAP			
Bulk / Apparent Specific Gravi	2.748/2.862	2.645/2.664	2.786/2.805			
Absorption, %	1.45	0.27	0.3			
Fine Aggregate Angularity, %	44.6	44.6	47.9			
Sand Equivalent 85 86 71						
Data provided by either the age	ency or determi	ned at NCAT lab				

Project 3:

Project 3 was evaluated on May 23, 2002, and consisted of a 38.1 mm of an existing HMA pavement in the eastbound lane of a two-lane county highway. The mix consisted of a 9.5mm nominal maximum aggregate size fine-graded bland designed at an N_{design} of 65 gyrations resulting in a design asphalt content of 5.5 percent. The asphalt binder used was a PG 64-22. A liquid anti-stripping agent was used at a rate of 0.5 percent. The weather conditions during paving were approximately 70-75°F, sunny, with a slight wind. The mix design and gradation information are provided in Tables A15 and A16.

The project was located approximately 35-40 miles from the plant. Dump trucks fed the mix directly into the paver. Breakdown and intermediate rolling were both conducted using the same Ingersoll Rand DD110 HF roller, with breakdown rolling beginning immediately after the mat was laid down, approximately at a temperature of 265°F. Maximum amplitude and frequency were used for both breakdown and intermediate rolling, with intermediate rolling beginning at a temperature of 235°F. A rolling pattern of two to three passes was used for both breakdown and intermediate rolling. Finish rolling was performed using a Dynapac roller operating in static mode making two passes at a starting temperature of about 140°.

While at the plant, the following materials were obtained: individual aggregate stockpiles used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A17-A21.

Table A15: Project 3 Mix Design Summary							
Infor	Information						
JMF I.D. Number:	2065-02-09						
Date(s) on Project:	5/23/02						
Number of Stockpiles Used:	3						
- Coarse Aggregate Angularity:	100% 2+ crushed faces						
- Fine Aggregate Angularity:	49.3						
Percent RAP:	15						
Gradation:	Fine						
Ninitial, Ndesign, Nmax:	7, 65, 65						
Type Asphalt Binder Used:	PG 64-22						
Design Asphalt Binder Content:	5.5						
Type Modifier Used:	NA						
Type Anti-Strip Additive Used:	Liquid ARR MAZ						
Percent Anti-Strip Used:	0.5						
Design Voids in Total Mix:	3.9						
Design Voids in Mineral Aggregate:	15.7						
Design Voids Filled with Asphalt:	75						
Tensile Strength Ratio:	0.85						
Dust/Asphalt Ratio:	1.07						

Table A	Table A16: Design Gradation for Project 3							
Sieve Size	Sieve Size, mm	Recommended Limits From JMF	Percent Passing					
11/2 in.	37.5		100					
1 in.	25.0		100					
³ / ₄ in.	19.0		100					
1/2 in.	12.5	100	100					
3/8 in	9.5	90-100	95.7					
No. 4	4.75	90 max	56.7					
No. 8	2.36	38-67	39.1					
No. 16	1.18		30.0					
No. 30	0.6		21.9					
No. 50	0.3		13.2					
No. 100	0.15		9.6					
No. 200	0.075	2-10	6.1					

Table A17	': Results fi	rom SGC Co	ompaction	s										Ndesign = 65
Project:	3													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descrip	tion: 9.5mm Co	arse			9/4/2003
AC Sp. Gr. (Gb) =					2.676		2.658						
		1.028												
				Masses	-	SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		-
Sample	Specimen	Asphalt	In Air	In Water	SSD	Bulk	TMD	Aggregate	AC by					Eff. AC
Number	Number	Content	(ame)	(ame)	(gms)	(Gmb)	(Gmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(giiis)	(giii3)	(giii3)	(GIIID)	(Omm)	СС	%	pcf				%
1	1	5.5	4960.6	2864.1	4967.6	2.358	2.461	83.8	12.6	147.2	4.2	16.2	74.2	5.3
1	2	5.5	4965.8	2874.0	4971.8	2.367	2.461	84.2	12.7	147.7	3.8	15.8	75.9	5.3
1	3	5.5	4967.5	2878.1	4973.6	2.371	2.461	84.3	12.7	147.9	3.7	15.7	76.6	5.3
2	1	5.6	4963.2	2883.2	4968.3	2.380	2.456	84.5	13.0	148.5	3.1	15.5	80.1	5.4
2	2	5.6	4964.1	2880.9	4969.6	2.377	2.456	84.4	12.9	148.3	3.2	15.6	79.3	5.4
2	3	5.6	4963.3	2886.8	4970.8	2.382	2.456	84.6	13.0	148.6	3.0	15.4	80.4	5.4
3	1	5.5	4958.8	2868.3	4966.3	2.364	2.459	84.0	12.6	147.5	3.9	16.0	75.7	5.3
3	2	5.5	4963.9	2858.9	4972.5	2.349	2.459	83.5	12.6	146.5	4.5	16.5	72.8	5.3
3	3	5.5	4966.4	2868.6	4976.0	2.357	2.459	83.8	12.6	147.1	4.2	16.2	74.3	5.3
Input By:													Checked By	<i>r</i> :
SSD = Satur	ated Surface [Dry		cc = cubic ce	entimeter		VMA = Voids	in Mineral A	ggregate					
TMD = Theo	pretical Maximu	um Density		AC = Aspha	lt Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
gm = gram				pcf = pounds	s per cubic for	ot	VTM = Voids	in Total Mix						

Table A17: Results from SGC Compactions

Table A18:	Results o	f Heiaht	Sample	SGC	Compactions

Table A18	8: Results o	of Height Sa	mple SGC Com	oactions								Ndesign = 65
Project:	3											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 9.5mm Coars	e		9/4/2003
AC Sp. Gr. (Gb) =	4 000		1	0.070		0.050					
	1	1.028	3	Magaaa	2.676		2.658				1	
Comula	On a simon	Annhalt		wasses		SPEC	FIC GRAVITIES	A C hu	VC			
Number	Number	Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Content %
1	1	5.5	1637.1	924.0	1648.7	2.259	2.461	12.1	8.2	10.8	354.0	5.3
1	2	5.5	1638.5	930.2	1645.5	2.291	2.461	12.3	6.9	10.4	21.0	5.3
1	3	5.5	1534.8	867.7	1544.7	2.267	2.461	12.1	7.9	10.5	238.0	5.3
1	4	5.5	1538.2	869.9	1555.9	2.242	2.461	12.0	8.9	11.9	424.0	5.3
1	5	5.5	1430.5	806.9	1443.6	2.247	2.461	12.0	8.7	11.1	393.0	5.3
1	6	5.5	1435.2	811.0	1450.8	2.243	2.461	12.0	8.9	11.6	627.0	5.3
1	7	5.5	1339.7	754.5	1371.9	2.170	2.461	11.6	11.8	16.7	6936.0	5.3
1	8	5.5	1333.0	750.2	1368.2	2.157	2.461	11.5	12.4	24.1	3111.0	5.3
2	1	5.6	1510.6	852.8	1519.2	2.267	2.456	12.3	7.7	9.5	268.5	5.4
2	2	5.6	1523.8	859.7	1532.7	2.264	2.456	12.3	7.8	10.4	205.3	5.4
2	3	5.6	1416.9	796.7	1432.6	2.228	2.456	12.1	9.3	14.7	787.0	5.4
2	4	5.6	1419.5	799.8	1432.6	2.243	2.456	12.2	8.7	12.0	314.0	5.4
2	5	5.6	1378.5	771.7	1401.7	2.188	2.456	11.9	10.9	14.8	778.7	5.4
2	6	5.6	1385.4	777.1	1414.5	2.174	2.456	11.8	11.5	14.3	2323.8	5.4
2	7	5.6	1339.3	749.4	1372.7	2.149	2.456	11.7	12.5	16.3	3907.4	5.4
2	8	5.6	1329.7	746.1	1364.6	2.150	2.456	11.7	12.5	17.3	2307.0	5.4
3	1	5.5	1436.1	808.3	1448.2	2.244	2.459	12.0	8.7	16.1	347.9	5.3
3	2	5.5	1416.6	796.0	1436.0	2.213	2.459	11.8	10.0	12.7	1570.8	5.3
3	3	5.5	1370.1	769.4	1396.0	2.187	2.459	11.7	11.1	14.7	2325.1	5.3
3	4	5.5	1386.7	781.4	1412.6	2.197	2.459	11.8	10.7	14.5	2293.2	5.3
3	5	5.5	1364.5	767.0	1391.7	2.184	2.459	11.7	11.2	15.2	3423.2	5.3
3	6	5.5	1365.1	770.6	1397.4	2.178	2.459	11.7	11.4	16.2	3448.1	5.3
3	7	5.5	1336.2	755.6	1373.0	2.164	2.459	11.6	12.0	16.7	6793.8	5.3
3	8	5.5	1335.0	756.6	1370.0	2.176	2.459	11.6	11.5	16.7	6881.1	5.3
Input By:	•						•				•	
SSD = Satur	ated Surface I	Dry		cc = cubic ce	entimeter							
TMD = Theo	oretical Maxim	um Density		AC = Asphal	t Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tota	al Mix				

Table A19: Gradations and Asphalt Contents

Gradat	ion			Sample	1				Sample	2		Sample 3 Or			0v	erall			
Sieve Size (mm)	Sieve^0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.00	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0	99.6	100.0	99.9	0.2	100.0	100.0	100.0	100.0	0.0	100.0	0.08	100.0
12.5	3.12	98.5	99.5	98.7	98.9	0.5	99.4	98.5	98.3	98.7	0.6	98.2	99.6	98.1	98.6	0.8	98.8	0.13	100.0
9.5	2.75	91.2	91.3	91.2	91.2	0.1	94.2	92.2	92.8	93.1	1.0	93.2	93.2	90.6	92.3	1.5	92.2	0.92	95.7
4.75	2.02	50.9	52.9	51.5	51.8	1.0	56.3	55.5	54.4	55.4	1.0	51.6	52.7	49.3	51.2	1.7	52.8	2.28	56.7
2.36	1.47	32.9	33.3	32.9	33.0	0.2	36.3	35.5	34.6	35.5	0.9	32.3	32.5	31.1	32.0	0.8	33.5	1.79	39.1
1.18	1.08	25.4	25.5	25.2	25.4	0.2	27.8	27.3	26.8	27.3	0.5	24.8	25.0	24.2	24.7	0.4	25.8	1.36	30.0
0.6	0.8	19.1	19.3	19.0	19.1	0.2	21.1	20.8	20.3	20.7	0.4	18.8	19.0	18.4	18.7	0.3	19.5	1.06	21.9
0.3	0.58	11.4	11.6	11.3	11.4	0.2	12.8	12.6	12.2	12.5	0.3	11.0	11.2	10.8	11.0	0.2	11.7	0.79	13.2
0.15	0.43	7.9	8.1	7.9	8.0	0.1	8.9	8.7	8.4	8.7	0.3	7.5	7.6	7.4	7.5	0.1	8.0	0.59	9.6
0.075	0.31	5.6	5.7	5.6	5.6	0.1	6.3	6.1	5.9	6.1	0.2	5.4	5.4	5.2	5.3	0.1	5.7	0.39	6.1
			San	ple 1				San	nple 2				Sa	mple 3			Ov	erall	
Asphalt C	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		5.50	5.40	5.50	5.47	0.06	5.70	5.60	5.50	5.60	0.10	5.50	5.50	5.40	5.47	0.06	5.51	0.08	5.5

	1	2
Test	#8's	
Bulk / Apparent Specific Gravit	2.627/2.711	
Absorption, %	1.2	
LA Abrasion, % Loss	15	
Flat and Elongated, %		
3 to 1		
5 to 1	2.7	
Coarse Aggregate Flow, %	47.4	
Crushed Content, %		
One Face	100	
Two+ Faces	100	
Data provided by either the age	ncy or determ	ined at NCAT lab

Table A20: Coarse Aggregate Properties for Project 3

Table A21: Fine Aggregate Properties for Project 3

		J				
Test	#10's	Conc. Sand	RAP			
Bulk / Apparent Specific Gravi	2.493/2.689	2.604/2.636	2.518/2.688			
Absorption, %	2.9	0.5	2.5			
Fine Aggregate Angularity, %	51.8	46.5	47.9			
Sand Equivalent 63 90 41						
Data provided by either the age	ncy or determi	ned at NCAT lab				

Project 4:

Project 4 was evaluated on April 16, 2002 and consisted of the placement of 63.5mm of new hot mix asphalt on an aggregate base laid on the shoulder of an existing interstate highway. The mix consisted of a 12.5mm nominal maximum aggregate size granite/RAP fine-graded blend designed at an N_{design} of 75 gyrations resulting in a design asphalt content of 5.7 percent. The asphalt binder that was used was a type RA295. A liquid anti-stripping agent was used at a rate of 0.5 percent. The weather conditions during paving were approximately 90°F, sunny, and windy. The design and gradation information are provided in Tables A22 and A23.

The project was located approximately 15 miles from the plant. Dump trucks fed the mix to the paver. Breakdown rolling was conducted by a Caterpillar CB634C roller making four to five passes in static mode starting at a temperature of approximately 265°F, with the mat being laid at a temperature of 300°F. Intermediate rolling began when the mat reached 240°F and was performed by an Ingersoll Rand DD125 roller operating in static mode making approximately six passes over the mat. Finish rolling was performed using an Ingersoll Rand DD110 starting at just under 200°F and was conducted in static mode making four to five passes.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mixture are provided in Tables A24-A28.

Table A23: Project 4 Mix Design Summary						
Information						
JMF I.D. Number: SP02-1601A (TL-C)						
Date(s) on Project:	4/16/02					
Number of Stockpiles Used:	3					
- Coarse Aggregate Angularity:	100% 2+ crushed faces					
- Fine Aggregate Angularity:	45					
Percent RAP:	28					
Gradation:	12.5mm Fine Graded					
Ninitial, Ndesign, Nmax:	7, 75, 125					
Type Asphalt Binder Used:	RA925					
Design Asphalt Binder Content:	5.7					
Type Modifier Used:	NA					
Type Anti-Strip Additive Used:	Liquid ARR MAZ					
Percent Anti-Strip Used:	0.5					
Design Voids in Total Mix:	4.0					
Design Voids in Mineral Aggregate:	15.2					
Design Voids Filled with Asphalt:	75.2					
Tensile Strength Ratio:	NA					
Dust/Asphalt Ratio:	1.02					

Table A	Table A23: Design Gradation for Project 4								
Sieve Size	Sieve Size, mm	Recommended Limits From JMF	Percent Passing						
11/2 in.	37.5		100						
1 in.	25.0		100						
³ / ₄ in.	19.0	100	100						
¹ / ₂ in.	12.5	90-100	93						
3/8 in	9.5	90 max	86						
No. 4	4.75		66						
No. 8	2.36	28-58	47						
No. 16	1.18		35						
No. 30	0.6		26						
No. 50	0.3		19						
No. 100	0.15		9						
No. 200	0.075	2-10	4.7						

Fable A24: SGC Sample Properties Ndesign = 75															
Project:	4													Date	
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):		Mix Description: 12.5mm Fine					9/4/2003	
AC Sp. Gr. (Gb) =						2.663		2.636							
		1.028													
			Masses		SPECIFI		GRAVITIES	VOLUME	S AT Ndes		VOIDS				
Sample Number	Specimen Number	Asphalt Content	In Air	In Water	SSD (gms)	Bulk	TMD (Cmm)	Aggregate Volume	AC by Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Eff. AC Content	
			(giiis)	(giiis)	(giiis)	(GIIID)	(Gillin)	CC	%	pcf				%	
1	1	4.9	4788.1	2785.1	4791.2	2.387	2.469	86.1	11.4	148.9	3.3	13.9	76.0	4.5	
1	2	4.9	4764.6	2773.1	4768.7	2.388	2.469	86.1	11.4	149.0	3.3	13.9	76.2	4.5	
1	3	4.9	4798.5	2781.7	4801.1	2.376	2.469	85.7	11.3	148.3	3.8	14.3	73.7	4.5	
2	1	5.0	4799.2	2797.6	4802.6	2.394	2.466	86.3	11.6	149.4	2.9	13.7	78.6	4.6	
2	2	5.0	4800.9	2795.0	4806.5	2.387	2.466	86.0	11.6	148.9	3.2	14.0	77.0	4.6	
2	3	5.0	4819.5	2807.1	4823.0	2.391	2.466	86.2	11.6	149.2	3.1	13.8	77.9	4.6	
3	1	5.1	4787.0	2775.7	4789.6	2.377	2.467	85.6	11.8	148.3	3.6	14.4	74.7	4.7	
3	2	5.1	4795.6	2781.0	4797.8	2.378	2.467	85.6	11.8	148.4	3.6	14.4	74.9	4.7	
3	3	5.1	4800.3	2789.0	4804.7	2.381	2.467	85.7	11.8	148.6	3.5	14.3	75.7	4.7	
Input By:													Checked By	:	
SSD = Saturated Surface Dry cc				cc = cubic centimeter			VMA = Voids in Mineral Aggregate								
TMD = Theoretical Maximum Density				AC = Asphalt Cement				VFA = Voids Filled With Asphalt Cement							
qm = gram				pcf = pound	s per cubic foo	ot	VTM = Voids in Total Mix								
Table A25: Results	of Height Sample	e SGC Compactions													
--------------------	------------------	-------------------													
--------------------	------------------	-------------------													

Table A25	Results of l	Height Sampl	le SGC Compactio	ons								Ndesign = 75
Project:	4											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	9/4/2003			
AC Sp. Gr. (Gb) =	1 0 2 9			2,662		2,626					
	1	1.020		Massas	2.003	SDECI			VC		1	
Sample	Specimen	Asphalt		10123253				AC by	v0			Eff AC
Number	Number	Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Content %
1	1	4.9	2095.3	1214.1	2097.1	2.373	2.469	11.3	3.9	4.9	0	4.5
1	2	4.9	2091.5	1205.1	2093.5	2.354	2.469	11.2	4.6	7.5	0	4.5
1	3	4.9	2041.3	1181.5	2042.8	2.370	2.469	11.3	4.0	4.8	0	4.5
1	4	4.9	2046.1	1185.2	2048.6	2.370	2.469	11.3	4.0	5.3	0	4.5
1	5	4.9	1987.7	1135.5	1991.0	2.323	2.469	11.1	5.9	7.1	18	4.5
1	6	4.9	1995.0	1144.2	1998.1	2.336	2.469	11.1	5.4	6.6	0	4.5
1	7	4.9	1941.8	1091.7	1946.7	2.271	2.469	10.8	8.0	10.4	54	4.5
1	8	4.9	1940.9	1092.4	1946.2	2.273	2.469	10.8	7.9	9.3	38	4.5
2	1	5.0	2080.7	1202.4	2082.7	2.364	2.466	11.5	4.2	4.9	0	4.6
2	2	5.0	2075.2	1207.4	2076.9	2.387	2.466	11.6	3.2	4.5	0	4.6
2	3	5.0	2028.5	1171.9	2030.1	2.364	2.466	11.5	4.1	5.4	0	4.6
2	4	5.0	2025.0	1168.0	2026.6	2.358	2.466	11.5	4.4	5.6	0	4.6
2	5	5.0	1970.4	1120.2	1973.9	2.308	2.466	11.2	6.4	7.6	0	4.6
2	6	5.0	1972.9	1125.0	1976.9	2.316	2.466	11.3	6.1	7.1	10	4.6
2	7	5.0	1923.9	1077.9	1929.9	2.258	2.466	11.0	8.4	10.5	86	4.6
2	8	5.0	1926.5	1077.8	1932.3	2.255	2.466	11.0	8.6	10.4	86	4.6
3	1	5.1	2068.4	1189.2	2070.0	2.348	2.467	11.7	4.8	5.2	0	4.7
3	2	5.1	2069.8	1188.0	2072.3	2.341	2.467	11.6	5.1	6.0	0	4.7
3	3	5.1	2021.9	1160.0	2023.8	2.341	2.467	11.6	5.1	5.7	0	4.7
3	4	5.1	2024.4	1162.8	2025.9	2.345	2.467	11.6	4.9	5.7	0	4.7
3	5	5.1	1969.8	1122.8	1974.6	2.313	2.467	11.5	6.3	7.5	13	4.7
3	6	5.1	1971.1	1120.4	1974.1	2.309	2.467	11.5	6.4	7.7	75	4.7
3	7	5.1	1923.8	1077.9	1928.8	2.261	2.467	11.2	8.4	9.7	73	4.7
3	8	5.1	1786.5	961.5	1800.6	2.129	2.467	10.6	13.7	15.3	787	4.7
Input By:				-				-				
SSD = Satur	ated Surface I	Dry		cc = cubic ce	entimeter							
TMD = Theo	retical Maxim	um Density		AC = Asphal	t Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on .			Sample	e 1		Sample 2							Sample	e 3		Ov	erall	
Sieve Size (mm)	Sieve^0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.00	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
19	3.76	99.3	100.0	99.2	99.5	0.4	100.0	100.0	99.5	99.8	0.3	98.6	99.1	100.0	99.2	0.7	99.5	0.30	100.0
12.5	3.12	95.2	95.8	94.4	95.1	0.7	94.4	94.5	93.1	94.0	0.8	91.7	93.2	94.8	93.2	1.6	94.1	0.96	93.0
9.5	2.75	88.8	90.0	88.8	89.2	0.7	87.6	88.7	85.9	87.4	1.4	85.6	86.5	89.3	87.1	1.9	87.9	1.12	86.0
4.75	2.02	67.0	68.5	67.8	67.8	0.8	66.3	68.0	66.6	67.0	0.9	65.2	66.7	69.5	67.1	2.2	67.3	0.42	66.0
2.36	1.47	47.1	48.4	47.7	47.7	0.7	46.4	48.1	46.7	47.1	0.9	46.0	47.1	49.0	47.4	1.5	47.4	0.33	47.0
1.18	1.08	33.3	33.8	33.4	33.5	0.3	32.3	33.2	32.4	32.6	0.5	32.1	32.7	33.9	32.9	0.9	33.0	0.44	35.0
0.6	0.8	25.6	25.8	25.5	25.6	0.2	24.6	25.1	24.7	24.8	0.3	24.4	24.6	25.5	24.8	0.6	25.1	0.47	26.0
0.3	0.58	19.4	19.4	19.3	19.4	0.1	18.4	18.6	18.4	18.5	0.1	18.0	18.0	18.8	18.3	0.5	18.7	0.59	19.0
0.15	0.43	11.2	11.1	11.3	11.2	0.1	10.6	10.6	10.6	10.6	0.0	10.3	9.8	10.3	10.1	0.3	10.6	0.53	9.0
0.075	0.31	5.4	5.1	5.4	5.3	0.2	4.9	4.9	5.0	4.9	0.1	4.1	4.0	4.3	4.1	0.2	4.8	0.60	4.7
Sample 1						San	nple 2				Sa	mple 3			Ov	erall			
Asphalt Content Rep1 Rep2 Rep3 Avg.			Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC			
		4.80	4.90	5.00	4.90	0.10	5.00	5.20	4.90	5.03	0.15	5.00	5.10	5.10	5.07	0.06	5.00	0.09	5.7

Table A26: Gradations and Asphalt Contents

<u></u>	1	2
Test	#67 Stone	#89 Stone
Bulk / Apparent Specific Gravit	2.627/2.684	2.587/2.658
Absorption, %	0.8	1
LA Abrasion, % Loss	15.5	15.9
Flat and Elongated, %		
3 to 1	14.4	4.3
5 to 1	0.9	0.6
Coarse Aggregate Flow, %	45.3	45.6
Crushed Content, %		
One Face	31.9	20.6
Two+ Faces	68.1	79.4
Data provided by either the age	ncy or determi	ined at NCAT lab

Table A27: Coarse Aggregate Properties for Project 4

Table A28: Fine Aggregate Properties for Project 4

	1	2
Test	W-12 Scrns	RAP
Bulk / Apparent Specific Gravi	2.671/2.762	2.469/2.638
Absorption, %	1.2	2.6
Fine Aggregate Angularity, %	46.3	43.8
Sand Equivalent	87	72
Data provided by either the age	ency or determi	ined at NCAT lab

Project 5:

Project 5 was evaluated on May 29, 2002 and consisted of the 31.8mm overlay of an existing HMA pavement in the eastbound lane of a two-lane state highway. The mix consisted of a 9.5mm nominal maximum aggregate size fine-graded blend designed at an N_{design} of 100 gyrations resulting in a design asphalt content of 7.0 percent. The asphalt binder that was used was a PG 70-22. A liquid anti-stripping agent was used at a rate of 0.5 percent. The weather conditions during paving were approximately 80°F, sunny, with no wind. The design and gradation information are provided in Tables A29 and A30.

The project was located approximately 15-20 miles from the plant. The mat was laid over a tack coat that had an application rate of 0.3 gallons per square yard, and was laid at a temperature of approximately 285°F. An Ingersoll Rand DD110HF roller performed the breakdown rolling, making four to five passes using maximum amplitude and frequency starting at a temperature of about 240°F. Intermediate rolling was also conducted in maximum amplitude and frequency, starting at a temperature of about 170°F and performed by a Caterpillar CB634C roller making three passes over the mat. Finish rolling was conducted using a Hamm HD12 making two passes in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A31-A35.

Table A29: Project 5	Mix Design Summary
Inform	nation
JMF I.D. Number:	01-606-152
Date(s) on Project:	5/29/02
Number of Stockpiles Used:	3
- Coarse Aggregate Angularity:	NA
- Fine Aggregate Angularity:	NA
Percent RAP:	15.4
Gradation:	9.5mm Fine Graded
Ninitial, Ndesign, Nmax:	8, 100, 160
Type Asphalt Binder Used:	PG 70-22
Design Asphalt Binder Content:	7.0
Type Modifier Used:	NA
Type Anti-Strip Additive Used:	Liquid ARR MAZ
Percent Anti-Strip Used:	0.5
Design Voids in Total Mix:	4.0
Design Voids in Mineral Aggregate:	15.0
Design Voids Filled with Asphalt:	73
Tensile Strength Ratio:	NA
Dust/Asphalt Ratio:	NA

Table A	A30: Design G	radation for Pro	ject 5
Sieve Size	Sieve Size, mm	Recommended Limits	Percent Passing
11/2 in.	37.5		100
1 in.	25.0		100
³ / ₄ in.	19.0		100
¹ / ₂ in.	12.5		100
3/8 in	9.5		99
No. 4	4.75		81
No. 8	2.36		60
No. 16	1.18		44
No. 30	0.6		30
No. 50	0.3		19
No. 100	0.15		9.0
No. 200	0.075		4.5

Table A31	: Results fi	rom SGC Co	ompaction	s									N	ldesign = 100
Project:	5													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descrip	tion: 9.5mm Fir	ne			9/4/2003
AC Sp. Gr. (Gb) =			2.615		2.612		2.476						
		1.028												
				Masses SPECIF			GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	imple Specimen Asphalt		In Air	In Water SSD		Bulk	тмр	Aggregate	AC by					Eff. AC
Number	umber Number Content		(ams)	(ams)	(gms)	(Gmb)	(Gmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(giiis)	(giii3)	(gill3)	(GIIID)	(Omm)	CC	%	pcf				%
1	1	6.8	4545.8	2515.9	4548.5	2.236	2.363	84.2	14.8	139.6	5.4	15.8	66.1	4.8
1	2	6.8	4542.7	2517.1	4546.1	2.239	2.363	84.3	14.8	139.7	5.3	15.7	66.6	4.8
1	3	6.8	4294.8	2376.3	4298.4	2.234	2.363	84.1	14.8	139.4	5.4	15.9	65.8	4.8
2	1	7.0	4530.7	2504.2	4534.4	2.232	2.355	83.8	15.2	139.3	5.2	16.2	67.6	5.0
2	2	7.0	4535.0	2503.7	4536.1	2.231	2.355	83.8	15.2	139.2	5.3	16.2	67.6	5.0
2	3	7.0	4534.9	2507.2	4536.9	2.234	2.355	83.9	15.2	139.4	5.1	16.1	68.1	5.0
3	1	7.0	4528.3	2520.8	4530.0	2.254	2.364	84.7	15.3	140.6	4.7	15.3	69.6	5.0
3	2	7.0	4528.9	2519.3	4530.9	2.251	2.364	84.6	15.3	140.5	4.8	15.4	69.1	5.0
3	3	7.0	4530.3	2517.9	4532.0	2.249	2.364	84.5	15.3	140.4	4.9	15.5	68.7	5.0
Input By:													Checked By	r:
SSD = Satur	ated Surface [Dry		cc = cubic c	entimeter		VMA = Voids	in Mineral Ag	ggregate					
TMD = Theo	retical Maximu	um Density		AC = Aspha	lt Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
gm = gram				pcf = pounds	s per cubic foo	ot	VTM = Voids	in Total Mix						

Table A31: Results from SGC Compactions

Table A33:	Results	of Heiaht	Sample	SGC	Compactions

Table A33	: Results o	of Height Sa	mple SGC Comp	oactions							N	design = 100
Project:	5											Date
_			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 9.5mm Fine			9/4/2003
AC Sp. Gr. (Gb) =											
		1.028	3		2.612		2.476				-	
				Masses	-	SPECI	FIC GRAVITIES		VC	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	6.8	1145.7	613.1	1150.9	2.130	2.363	14.1	9.8	11.8	105	4.8
1	2	6.8	1145.7	601.7	1151.7	2.083	2.363	13.8	11.8	12.9	191	4.8
1	3	6.8	1045.2	546.4	1051.7	2.068	2.363	13.7	12.5	14.5	244	4.8
1	4	6.8	1042.2	545.1	1046.2	2.080	2.363	13.8	12.0	14.0	222	4.8
1	5	6.8	1004.6	514.0	1011.6	2.019	2.363	13.4	14.6	17.6	605	4.8
1	6	6.8	1004.2	514.6	1017.2	1.998	2.363	13.2	15.4	17.1	605	4.8
1	7	6.8	964.4	489.0	985.3	1.943	2.363	12.9	17.8	21.3	1809	4.8
1	8	6.8	963.3	486.1	978.6	1.956	2.363	12.9	17.2	18.6	1797	4.8
2	1	7.0	1097.2	580.8	1101.3	2.108	2.355	14.4	10.5	12.9	101	5.0
2	2	7.0	1099.7	581.5	1102.7	2.110	2.355	14.4	10.4	13.9	109	5.0
2	3	7.0	1047.2	548.8	1051.2	2.084	2.355	14.2	11.5	13.1	204	5.0
2	4	7.0	1045.1	546.0	1049.8	2.074	2.355	14.1	11.9	13.0	245	5.0
2	5	7.0	1019.1	524.6	1025.0	2.037	2.355	13.9	13.5	14.8	486	5.0
2	6	7.0	1017.4	523.0	1023.7	2.032	2.355	13.8	13.7	15.9	609	5.0
2	7	7.0	997.6	514.7	1011.6	2.008	2.355	13.7	14.7	21.0	807	5.0
2	8	7.0	997.2	520.0	1017.7	2.004	2.355	13.6	14.9	17.0	810	5.0
3	1	7.0	1074.4	574.2	1076.6	2.139	2.364	14.6	9.5	11.2	52	5.0
3	2	7.0	1071.3	569.3	1074.3	2.121	2.364	14.4	10.3	10.4	135	5.0
3	3	7.0	1033.9	535.6	1041.8	2.042	2.364	13.9	13.6	13.2	348	5.0
3	4	7.0	1043.7	546.5	1048.3	2.080	2.364	14.2	12.0	14.4	245	5.0
3	5	7.0	999.6	512.6	1012.1	2.001	2.364	13.6	15.3	16.2	811	5.0
3	6	7.0	1004.3	517.5	1015.5	2.017	2.364	13.7	14.7	16.8	812	5.0
3	7	7.0	965.9	485.4	979.3	1.956	2.364	13.3	17.3	17.6	2675	5.0
3	8	7.0	975.8	498.4	991.3	1.980	2.364	13.5	16.3	18.7	1797	5.0
Input By:	•		•				•				-	
SSD = Satur	ated Surface	Dry		cc = cubic ce	entimeter							
TMD = Theo	retical Maxim	um Density		AC = Asphal	t Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradat	ion			Sample	÷1				Sample	2				Sample	3		Ov	erall	1
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
12.5	3.12	99.7	99.6	99.4	99.6	0.2	100.0	99.8	99.7	99.8	0.2	99.9	99.5	100.0	99.8	0.3	99.7	0.15	100.0
9.5	2.75	98.1	97.8	97.6	97.8	0.3	98.9	97.2	97.4	97.8	0.9	98.7	98.3	98.9	98.6	0.3	98.1	0.46	99.0
4.75	2.02	81.8	81.5	79.4	80.9	1.3	83.0	80.8	79.4	81.1	1.8	83.2	81.5	81.3	82.0	1.0	81.3	0.59	81.0
2.36	1.47	61.7	61.4	60.3	61.1	0.7	61.4	60.4	59.0	60.3	1.2	61.5	60.0	59.6	60.4	1.0	60.6	0.47	60.0
1.18	1.08	46.0	45.9	45.4	45.8	0.3	46.1	45.3	44.6	45.3	0.8	46.2	45.1	45.1	45.5	0.6	45.5	0.22	44.0
0.6	0.8	31.8	31.9	31.7	31.8	0.1	31.6	31.2	30.9	31.2	0.4	32.0	31.3	31.5	31.6	0.4	31.5	0.29	30.0
0.3	0.58	17.4	17.5	17.5	17.5	0.1	16.7	16.7	16.5	16.6	0.1	17.1	16.7	17.1	17.0	0.2	17.0	0.42	19.0
0.15	0.43	7.7	7.9	8.0	7.9	0.2	7.3	7.3	7.3	7.3	0.0	7.5	7.3	7.6	7.5	0.2	7.5	0.29	9.0
0.075	0.31	4.0	4.1	4.2	4.1	0.1	3.9	3.6	3.7	3.7	0.2	3.8	3.7	3.9	3.8	0.1	3.9	0.20	4.5
			San	nple 1				Sar	nple 2				Sar	nple 3			Ov	erall	
Asphalt C	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		6.80	6.90	6.70	6.80	0.10	7.10	7.00	6.90	7.00	0.10	7.10	6.90	6.90	6.97	0.12	6.92	0.11	7.00

	1	5
Test	14M	
Bulk / Apparent Specific Gravit	2.285/2.552	
Absorption, %	4.6	
LA Abrasion, % Loss	41.3	
Flat and Elongated, %		
3 to 1	18.1	
5 to 1	1.5	
Coarse Aggregate Flow, %	45.3	
Crushed Content, %		
One Face	100	
Two+ Faces	100	
Data provided by either the age	ncy or determine	ined at NCAT lab

Table A34: Coarse Aggregate Properties for Project 5

Table A35: Fine Aggregate Properties for Project 5

	1						
Test	Conc. Sand	Nat. Sand	RAP				
Bulk / Apparent Specific Gravi	2.529/2.666	2.619/2.644	2.606/2.662				
Absorption, %	2	0.4	0.8				
Fine Aggregate Angularity, %	46.3	42.6	43.6				
Sand Equivalent	95	94	70				
Data provided by either the agency or determined at NCAT lab							

Project 6:

Project 6 was evaluated on August 13, 2002 and consisted of the placement of 57.2mm of new hot mix asphalt over an unbound base in the eastbound lane of an existing highway. The mix consisted of a 12.5mm nominal maximum aggregate size coarse-graded gravel/sand blend designed at an N_{design} of 75 gyrations resulting in a design asphalt content of 5.95 percent. The asphalt binder that was used was an unmodified PG 58-28. One percent hydrated lime was used as an anti-stripping agent. The weather conditions during paving were approximately 80°F, sunny, with a light wind. The design and gradation information are provided in Tables A36 and A37.

The project was located approximately 15-20 miles from the drum plant. Windrow paving construction was accomplished with belly dump trucks in conjunction with an Ingersoll Rand PF5510 paver configured with a Barber Greene BG650 windrow elevator. Breakdown rolling was performed immediately after the mat was laid down by an Ingersoll Rand DD130 roller in maximum amplitude and frequency making three passes over the mat. A Caterpillar PS360B pneumatic tire roller, starting at a pavement temperature of 210F, performed intermediate rolling by making four to five passes. Finish rolling was conducted by an Ingersoll Rand DD130 making two passes in static mode, starting at a temperature of approximately 130F.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A38-A43.

Table A36: Project 6 Mix Design Summary							
Information							
JMF I.D. Number:	0440729-1						
Date(s) on Project:	8/13/02						
Number of Stockpiles Used:	3						
- Coarse Aggregate Angularity:	100% 2+ crushed faces						
- Fine Aggregate Angularity:	14.9						
Percent RAP:	None						
Gradation:	12.5mm Coarse Graded						
Ninitial, Ndesign, Nmax:	7, 75, NA						
Type Asphalt Binder Used:	PG 58-28						
Design Asphalt Binder Content:	5.95						
Type Modifier Used:	NA						
Type Anti-Strip Additive Used:	Hydrated Lime						
Percent Anti-Strip Used:	None						
Design Voids in Total Mix:	3.5						
Design Voids in Mineral Aggregate:	14.9						
Design Voids Filled with Asphalt:	76.7						
Tensile Strength Ratio:	0.85						
Dust/Asphalt Ratio:	1.0						

Table A37: Design Gradation for Project 6									
Sieve Size	Sieve Size, mm	Recommended Limits From JMF	Percent Passing						
11/2 in.	37.5		100						
1 in.	25.0		100						
³ ⁄4 in.	19.0	100	100						
¹ / ₂ in.	12.5	90-100	91						
3/8 in	9.5	72-82	77						
No. 4	4.75	45-55	50						
No. 8	2.36	30-38	34						
No. 16	1.18		24						
No. 30	0.6	4-20	18						
No. 50	0.3		12						
No. 100	0.15		9						
No. 200	0.075	4.4-8.4	6.4						

Table A38	Results fro	m SGC Com	pactions											Ndesign = 75
Project:	6													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. ((Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descript	tion: 12.5mm C	Coarse			9/5/2003
AC Sp. Gr. (Gb) =					2.612		2.537						
		1.028												
				Masses	•	SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	SSD	Bulk	TMD	Aggregate	AC by					Eff. AC
Number	Number	Content	(ams)	(ams)	(ams)	(Gmb)	(Gmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(giiio)	(giiio)	(giiio)	(01115)	(0)	CC	%	pcf				%
1	1	6.0	4635.2	2661.1	4639.4	2.343	2.396	86.8	13.7	146.2	2.2	13.2	83.2	4.9
1	2	6.0	4639.0	2660.0	4644.5	2.338	2.396	86.6	13.6	145.9	2.4	13.4	81.8	4.9
1	3	6.0	4639.5	2667.9	4642.3	2.350	2.396	87.1	13.7	146.6	1.9	12.9	85.1	4.9
2	1	6.6	4636.6	2658.1	4639.9	2.340	2.390	86.1	15.0	146.0	2.1	13.9	84.8	5.5
2	2	6.6	4669.5	2674.5	4672.3	2.337	2.390	86.0	15.0	145.8	2.2	14.0	84.2	5.5
2	3	6.6	4633.3	2656.6	4636.7	2.340	2.390	86.1	15.0	146.0	2.1	13.9	84.9	5.5
3	1													
3	2													
3	3													
Input By:			-	•									Checked By	/:
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter		VMA = Voids	in Mineral A	ggregate					
TMD = Theo	retical Maximu	um Density		AC = Aspha	It Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
gm = gram		-		pcf = pound	s per cubic foo	ot	VTM = Voids	in Total Mix						

Table A38: Results from SCC Compactions

Table A39: Results of Heig	ght Sample	SGU U	ompactions
----------------------------	------------	-------	------------

Table A39:	Results of I	Height Sampl	le SGC Compactio	ons							1	Ndesign = 75
Project:	6											Date
App. Sp. C		App. Sp. Gr. (Gsa)	a) Eff. Sp. Gr. (Gse):			Bulk Sp. Gr. (Gsb): Mix Description: 12.5mm Coarse				9/5/2003		
AC Sp. Gr. (Gb) =											
		1.028			2.612		2.537					
				Masses		SPECIF	IC GRAVITIES	VOIDS				
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	6.0	1999.6	1145.5	2000.6	2.338	2.396	13.6	2.4	4.0	0	4.9
1	2	6.0	2010.5	1154.6	2012.0	2.345	2.396	13.7	2.1	3.6	0	4.9
1	3	6.0	1910.6	1066.6	1919.3	2.241	2.396	13.1	6.5	8.0	55	4.9
1	4	6.0	1905.1	1067.2	1912.2	2.255	2.396	13.2	5.9	7.7	24	4.9
1	5	6.0	1868.7	1030.9	1882.3	2.195	2.396	12.8	8.4	9.8	174	4.9
1	6	6.0	1871.5	1036.0	1886.1	2.202	2.396	12.8	8.1	10.0	138	4.9
1	7	6.0	1824.5	1009.4	1855.4	2.157	2.396	12.6	10.0	11.5	400	4.9
1	8	6.0	1836.6	1011.8	1859.7	2.166	2.396	12.6	9.6	11.1	307	4.9
2	1	6.3	1890.6	1050.4	1901.9	2.220	2.390	13.6	7.1	7.8	34	5.2
2	2	6.3	1909.4	1060.7	1915.1	2.235	2.390	13.7	6.5	7.5	0	5.2
2	3	6.3	1812.2	990.5	1832.9	2.151	2.390	13.2	10.0	10.8	400	5.2
2	4	6.3	1836.8	1005.8	1855.7	2.161	2.390	13.2	9.6	10.5	308	5.2
2	5	6.3	1758.7	964.3	1794.8	2.118	2.390	13.0	11.4	13.0	NA	5.2
2	6	6.3	1762.7	961.6	1804.0	2.092	2.390	12.8	12.4	13.7	1487	5.2
2	7	6.3	1731.6	949.0	1783.3	2.076	2.390	12.7	13.2	14.5	2230	5.2
2	8	6.3	1740.8	943.2	1782.9	2.073	2.390	12.7	13.3	14.9	NA	5.2
Input By:												
SSD = Satur	ated Surface [Dry		cc = cubic ce	entimeter							
TMD = Theo	retical Maximu	um Density		AC = Aspha	t Cement		NA = No Data Avail	able				
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on			Sample	e 1		Sample 2				Ov			
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
12.5	3.12	95.6	96.4	96.1	96.0	0.4	97.1	95.9	92.6	95.2	2.3	95.6	0.59	91.0
9.5	2.75	82.0	83.4	84.2	83.2	1.1	84.1	82.0	79.2	81.8	2.5	82.5	1.01	77.0
4.75	2.02	56.0	56.6	57.4	56.7	0.7	57.0	55.1	53.7	55.3	1.7	56.0	0.99	50.0
2.36	1.47	39.0	39.3	40.3	39.5	0.7	39.8	38.3	37.5	38.5	1.2	39.0	0.71	34.0
1.18	1.08	27.9	28.1	28.4	28.1	0.3	27.7	26.9	26.3	27.0	0.7	27.6	0.82	24.0
0.6	0.8	21.1	21.3	21.3	21.2	0.1	20.7	20.1	19.6	20.1	0.6	20.7	0.78	18.0
0.3	0.58	15.8	16.1	15.9	15.9	0.2	15.2	14.8	14.4	14.8	0.4	15.4	0.80	12.0
0.15	0.43	11.7	12.1	11.7	11.8	0.2	11.0	10.6	10.5	10.7	0.3	11.3	0.80	
0.075	0.31	8.3	8.7	8.2	8.4	0.3	7.5	7.2	7.2	7.3	0.2	7.9	0.78	6.4
·			Sam	ple 1				Sar	nple 2			Ov	erall	
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		5.93	5.74	6.40	6.02	0.34	6.65	6.46	5.91	6.34	0.38	6.18	0.22	5.95

Table A40: Gradations and Asphalt Contents

Test	CA	IA					
Bulk / Apparent Specific Gravit	2.577/2.700	2.550/2.702					
Absorption, %	1.8	2.2					
LA Abrasion, % Loss	16.4	22.8					
Flat and Elongated, %							
3 to 1	28.6	53.3					
5 to 1	4.3	22.7					
Coarse Aggregate Flow, %	48.1	50.4					
Crushed Content, %							
One Face	11.2	15.6					
Two+ Faces	88.8	84.4					
Data provided by either the age	ncy or determi	ned at NCAT lab					

Table A41: Coarse Aggregate Properties for Project 6

Table A42: Fine Aggregate Properties for Project 6

	<u> </u>				
Test	Cr. Fines				
Bulk / Apparent Specific Gravi	2.518/2.706				
Absorption, %	2.76				
Fine Aggregate Angularity, %	48.5				
Sand Equivalent	67				
Data provided by either the agency or determined at NCAT lab					

Project 7:

Project 7 was evaluated on August 14, 2002 and consisted of the placement of 50.8mm of new hot mix asphalt in the westbound lane of an existing highway. The mix consisted of a 9.5mm nominal maximum aggregate size fine-graded gravel/sand blend designed at an N_{design} of 75 gyrations resulting in a design asphalt content of 5.7 percent. The asphalt binder that was used was a PG 64-28. One percent hydrated lime was used as an anti-stripping agent. The weather conditions during paving were approximately 75°F, sunny, and breezy (15-20mph). The mix design and gradation information are provided in Tables A43 and A44.

The project was located less than 5 miles from the drum plant. Windrow paving construction was accomplished with belly dump trucks in conjunction with a Blaw Knox PF220 paver configured with a windrow elevator. Breakdown rolling, starting at a temperature of approximately 200F, was performed a Caterpillar CB634C roller in medium amplitude and frequency making three passes over the mat. Finish rolling was started when the mat was cooled to a temperature of 150F and was conducted by another Caterpillar CB634C roller, this one making three to four passes in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A45-A49.

Table A43: Project 7 Mix Design Summary								
Information								
JMF I.D. Number:	NH 0403-0454							
Date(s) on Project:	8/14/02							
Number of Stockpiles Used:	3							
- Coarse Aggregate Angularity:	100% 2+ crushed faces							
- Fine Aggregate Angularity:	49.6							
Percent RAP:	None							
Gradation:	9.5mm Fine Graded							
Ninitial, Ndesign, Nmax:	7, 75, NA							
Type Asphalt Binder Used:	PG 64-28							
Design Asphalt Binder Content:	5.7							
Type Modifier Used:	NA							
Type Anti-Strip Additive Used:	Hydrated Lime							
Percent Anti-Strip Used:	None							
Design Voids in Total Mix:	NA							
Design Voids in Mineral Aggregate:	NA							
Design Voids Filled with Asphalt:	NA							
Tensile Strength Ratio:	NA							
Dust/Asphalt Ratio:	NA							

Table A44: Design Gradation for Project 7									
Sieve Size	Sieve Size, mm	Recommended Limits From JMF	Percent Passing						
11/2 in.	37.5								
1 in.	25.0								
³ ⁄4 in.	19.0	100							
¹ ∕₂ in.	12.5	90-100							
3/8 in	9.5	83-95							
No. 4	4.75	57-67							
No. 8	2.36	44-54							
No. 16	1.18								
No. 30	0.6	24-32							
No. 50	0.3								
No. 100	0.15								
No. 200	0.075	4.9-8.9							

Table A45	: Results fro	m SGC Com	pactions											Ndesign = 75
Project:	7													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):		Mix Description: 9.5mm Fine					9/5/2003
AC Sp. Gr. (Gb) =				2.728			2.747						
		1.028	3											
				Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	66D	Bulk	TMD	Aggregate	AC by] [1	Eff. AC
Number	Number	Content	(ama)	(ama)	(ama)	(Cmb)	(Cmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(gms)	(gins)	(gins)	(GIID)	(Gmm)	сс	%	pcf				%
1	1	5.7	4892.9	2841.2	4897.3	2.380	2.494	81.7	13.2	148.5	4.6	18.3	75.0	5.9
1	2	5.7	4891.2	2845.5	4893.4	2.388	2.494	82.0	13.2	149.0	4.2	18.0	76.5	5.9
1	3	5.7	4898.6	2847.7	4900.5	2.386	2.494	81.9	13.2	148.9	4.3	18.1	76.1	5.9
													ĺ	
2	1	5.7	4918.3	2870.1	4922.6	2.396	2.494	82.3	13.3	149.5	3.9	17.7	77.9	5.9
2	2	5.7	4915.6	2871.0	4917.9	2.401	2.494	82.4	13.3	149.9	3.7	17.6	78.9	5.9
2	3	5.7					2.494						1	5.9
Input By:				•									Checked By	r:
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter		VMA = Voids	s in Mineral Ag	ggregate					
TMD = Theo	pretical Maximu	um Density		AC = Aspha	lt Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
om = oram				pcf = pound	s per cubic for	ot	VTM = Voids	s in Total Mix	-					

Table A45: Results from SGC Compactions

Table 46:	Results	of Height	Sample	SGC	Compaction	ns

Table 46: H	Results of He	eight Sample	SGC Compaction	S							l	Ndesign = 75
Project:	7											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Description: 9.5mm Fine				9/11/2003
AC Sp. Gr. (Gb) =						• • • •	-				
		1.028			2.728		2.747					
				Masses		SPECIF	IC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	5.7	2111.4	1243.1	2112.3	2.429	2.494	13.5	2.6	2.8	0	5.9
1	2	5.7	2089.8	1219.6	2090.2	2.400	2.494	13.3	3.8	3.8	0	5.9
1	3	5.7	1968.7	1100.7	1971.1	2.262	2.494	12.5	9.3	9.3	33	5.9
1	4	5.7	1973.8	1105.7	1976.7	2.266	2.494	12.6	9.1	8.9	36	5.9
1	5	5.7	1944.2	1079.0	1947.8	2.238	2.494	12.4	10.3	10.0	71	5.9
1	6	5.7	1958.2	1090.2	1962.3	2.245	2.494	12.5	10.0	9.4	52	5.9
1	7	5.7	1929.0	1068.0	1938.3	2.216	2.494	12.3	11.1	10.9	154	5.9
1	8	5.7	1903.4	1041.0	1908.1	2.195	2.494	12.2	12.0	11.6	143	5.9
2	1	5.5	2046.3	1178.3	2047.5	2.354	2.494	12.6	5.6	5.9	0	5.7
2	2	5.5	2047.1	1184.6	2050.3	2.365	2.494	12.7	5.2	5.4	0	5.7
2	3	5.5	1941.3	1074.3	1948.2	2.221	2.494	11.9	10.9	10.7	143	5.7
2	4	5.5	1951.8	1080.7	1956.4	2.229	2.494	11.9	10.6	10.7	121	5.7
2	5	5.5	1901.4	1036.1	1907.4	2.182	2.494	11.7	12.5	12.3	191	5.7
2	6	5.5	1905.1	1040.3	1910.8	2.189	2.494	11.7	12.2	11.9	236	5.7
2	7	5.5	1863.8	1006.3	1871.7	2.154	2.494	11.5	13.6	11.6	334	5.7
2	8	5.5	1860.8	1000.0	1867.0	2.146	2.494	11.5	14.0	13.4	400	5.7
Input By:												
SSD = Satur	ated Surface [Dry		cc = cubic ce	entimeter							
TMD = Theo	retical Maximu	um Density		AC = Aspha	t Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on			Sample	91				Sample	2		Ον	erall	
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	
19	3.76	100	100	100	100.0	0.0	100	100	100	100.0	0.0	100.0	0.00	
12.5	3.12	98.7	98.8	99.3	98.9	0.3	99.8	99.6	99.9	99.8	0.2	99.35	0.59	
9.5	2.75	89.2	90.2	89.8	89.7	0.5	91.8	92.2	93	92.3	0.6	91.03	1.84	
4.75	2.02	65.3	68.1	68	67.1	1.6	65	65.9	67.6	66.2	1.3	66.65	0.68	
2.36	1.47	51.7	54.6	54.3	53.5	1.6	50.3	51.3	52.4	51.3	1.1	52.43	1.56	
1.18	1.08	40.2	42.5	42.2	41.6	1.3	38.9	39.6	40.4	39.6	0.8	40.63	1.41	
0.6	0.8	30.1	31.8	31.6	31.2	0.9	29.2	29.5	30.2	29.6	0.5	30.40	1.08	
0.3	0.58	20.6	21.8	21.6	21.3	0.6	20.1	20.3	20.8	20.4	0.4	20.87	0.66	
0.15	0.43	11.7	12.6	12.3	12.2	0.5	11.8	11.7	12.2	11.9	0.3	12.05	0.21	
0.075	0.31	6	6.8	6.4	6.4	0.4	6.4	6.3	6.7	6.5	0.2	6.43	0.05	
			San	nple 1				Sar	nple 2			Ον	erall	
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		5.60	5.80	5.70	5.70	0.10	5.40	5.60	5.60	5.53	0.12	5.62	0.12	5.7

Table A47: Gradations and Asphalt Contents

	1	3
Test	1/2"	
Bulk / Apparent Specific Gravit	2.687/2.785	
Absorption, %	1.3	
LA Abrasion, % Loss	13.6	
Flat and Elongated, %		
3 to 1	49.5	
5 to 1	3.9	
Coarse Aggregate Flow, %	46.4	
Crushed Content, %		
One Face	20	
Two+ Faces	80	
Data provided by either the age	ncy or determi	ined at NCAT lab

Table A48: Coarse Aggregate Properties for Project 7

Table A49: Fine Aggregate Properties for Project 7

	1	5						
Test	Cr. Fines	W. Sand						
Bulk / Apparent Specific Gravi	2.745/2.784	2.587/2.654						
Absorption, % 0.5 1								
Fine Aggregate Angularity, %49.142.2								
Sand Equivalent 62 74								
Data provided by either the age	ency or determi	ned at NCAT lab						

Project 8:

Project 8 was evaluated on the night of August 20, 2002 and the morning of August 21, 2002 (this project was conducted at night) and consisted of the placement of 50.8mm of new hot mix asphalt over a milled Portland Cement Concrete pavement. The mix consisted of a 19.0mm nominal maximum aggregate size coarse-graded limestone/sand blend designed at an N_{design} of 100 gyrations resulting in a design asphalt content of 5.3 percent. The asphalt binder that was used was a PG 64-22. One percent baghouse fines was used as an anti-stripping agent. The weather conditions during paving were approximately 70°F and clear. The mix design and gradation information are provided in Tables A50 and A51.

The project was located approximately 10 miles from the CMI drum plant. Pavement construction was conducted with end dump trucks in conjunction with a paver and a Roadtec 2500B material transfer device. Breakdown rolling was conducted by two Ingersoll Rand DD130 rollers, operating in echelon, making five passes each in maximum amplitude and frequency. Intermediate rolling was performed by an Ingersoll Rand PT220R pneumatic tire roller, using 90psi tire inflation pressure, making five passes over the mat. Finish rolling was conducted by an Ingersoll Rand DD90 roller making two passes in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A52-A56.

Table A50: Project 8	Mix Design Summary
Inform	nation
JMF I.D. Number:	J4P1347
Date(s) on Project:	8/20/02
Number of Stockpiles Used:	5
- Coarse Aggregate Angularity:	100% 2+ crushed faces
- Fine Aggregate Angularity:	NA
Percent RAP:	None
Gradation:	19.0mm Coarse Graded
Ninitial, Ndesign, Nmax:	8, 100, 160
Type Asphalt Binder Used:	PG 64-22
Design Asphalt Binder Content:	5.3
Type Modifier Used:	NA
Type Anti-Strip Additive Used:	Baghouse Fines
Percent Anti-Strip Used:	None
Design Voids in Total Mix:	4.0
Design Voids in Mineral Aggregate:	14.1
Design Voids Filled with Asphalt:	72
Tensile Strength Ratio:	91
Dust/Asphalt Ratio:	0.9

Table A	51: Design G	radation for Pro	ject 8
Sieve Size	Sieve Size, mm	Recommended Limits From JMF	Percent Passing
11/2 in.	37.5		100
1 in.	25.0	100	100
³ / ₄ in.	19.0	90-100	95
¹ / ₂ in.	12.5	90 max	79.8
3/8 in	9.5		72.4
No. 4	4.75		48.4
No. 8	2.36	23-49	29.9
No. 16	1.18		17.7
No. 30	0.6		10.6
No. 50	0.3		6.2
No. 100	0.15		4.6
No. 200	0.075	2-8	3.0

Table A52: Re	sults from	SGC C	ompactions.
---------------	------------	-------	-------------

Table A52:	Results fro	m SGC Com	pactions										Ν	design = 100
Project:	8													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (Gse):	Bulk Sp. Gr.	Bulk Sp. Gr. (Gsb):		ion: 19.0mm C	oarse			9/5/2003
AC Sp. Gr. (0	3b) =					2.697		2.577						
		1.028	,											<u> </u>
	'	1		Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		!
Sample	Specimen	Asphalt	In Air	In Water	990	Bulk	TMD	Aggregate	AC by	1			1	Eff. AC
Number	Number	Content	(ame)	(ame)	(gms)	(Cmb)	(Cmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
	1	1	(gnis)	(gnis)	(gins)	(GIIID)	(Ghini)	сс	%	pcf		(1	%
1	1	4.2	4732.4	2710.8	4739.1	2.333	2.477	86.7	9.5	145.6	5.8	13.3	56.2	2.5
1	2	4.2	4747.0	2708.3	4756.3	2.318	2.477	86.2	9.5	144.6	6.4	13.8	53.6	2.5
1	3	4.2	4756.2	2729.9	4763.0	2.339	2.477	87.0	9.6	146.0	5.6	13.0	57.4	2.5
	· · · · · · · · · · · · · · · · · · ·		,		· · · · ·		1					·,	1	1
2	1	4.2	4746.8	4771.6	4771.6	2.326	2.490	86.5	9.5	145.1	6.6	13.5	51.3	2.5
2	2	4.2	4799.8	4812.1	4812.1	2.354	2.490	87.5	9.6	146.9	5.5	12.5	56.3	2.5
2	3	4.2	4749.8	4777.6	4777.6	2.334	2.490	86.8	9.5	145.6	6.3	13.2	52.7	2.5
Input By:													Checked By	:
SSD = Satura	ated Surface !	Dry		cc = cubic cr	entimeter		VMA = Voids	in Mineral Ar	ggregate					
TMD = Theor	retical Maxim	um Density		AC = Aspha'	It Cement		VFA = Voids	Filled With A	sphalt Cemer	nt				
am = aram				pcf = pound	s per cubic for	ot	VTM = Voids	in Total Mix						ļ

I HOIV I LOWI I COULD OF ITOLEHE DUMDIC DOC COMPACION	Table A52:	Results	of Height	Sample	SGC	Compaction
---	------------	---------	-----------	--------	-----	------------

Table A52:	Results of I	Height Samp	le SGC Compactio	ons							N	design = 100
Project:	8											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse): Bulk Sp. Gr. (Gs		Bulk Sp. Gr. (Gsb):): Mix Description: 19.0mm Coarse				9/5/2003
AC Sp. Gr. (Gb) =											
		1.028	}		2.712		2.574		-		-	
				Masses		SPECIF	IC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	4.2	2348.3	1355.5	2351.1	2.359	2.477	9.6	4.8	5.5	0	2.3
1	2	4.2	2382.2	1368.5	2385.0	2.344	2.477	9.6	5.4	5.7	0	2.3
1	3	4.2	2254.5	1288.1	2259.4	2.321	2.477	9.5	6.3	7.1	10	2.3
1	4	4.2	2299.1	1318.1	2305.1	2.329	2.477	9.5	6.0	6.8	0	2.3
1	5	4.2	2232.8	1270.3	2239.9	2.303	2.477	9.4	7.0	7.4	43	2.3
1	6	4.2	2235.2	1270.9	2242.9	2.300	2.477	9.4	7.2	7.8	33	2.3
1	7	4.2	2222.9	1263.0	2235.3	2.286	2.477	9.3	7.7	8.5	322	2.3
1	8	4.2	2170.7	1233.3	2188.7	2.272	2.477	9.3	8.3	10.5	889	2.3
2	1	4.2	2165.1	1221.9	2190.3	2.236	2.490	9.1	10.2	11.0	490	2.3
2	2	4.2	2156.5	1229.7	2183.8	2.260	2.490	9.2	9.2	11.6	884	2.3
2	3	4.2	2039.7	1170.5	2092.2	2.213	2.490	9.0	11.1	18.5	8207	2.3
2	4	4.2	2061.4	1173.9	2111.9	2.198	2.490	9.0	11.7	16.2	5441	2.3
2	5	4.2	2008.2	1148.9	2060.4	2.203	2.490	9.0	11.5	18.3	8116	2.3
2	6	4.2	2002.1	1141.5	2058.5	2.183	2.490	8.9	12.3	18.4	8118	2.3
2	7	4.2	1919.3	1102.3	1972.1	2.207	2.490	9.0	11.4	21.7	16931	2.3
2	8	4.2	1962.7	1124.6	2014.0	2.207	2.490	9.0	11.4	17.8	8454	2.3
Input By:												
SSD = Satur	ated Surface [Dry		cc = cubic c	entimeter							
TMD = Theo	retical Maximu	um Density		AC = Aspha	lt Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on	Sample 1				Sample 2					Ον			
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.00	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.00	0.00	100.0
19	3.76	94.9	90.0	92.3	92.4	2.5	94.4	92.3	94.0	93.6	1.1	92.98	0.82	95.0
12.5	3.12	73.9	72.1	69.6	71.9	2.2	73.7	72.4	75.0	73.7	1.3	72.78	1.30	79.8
9.5	2.75	64.2	61.0	57.8	61.0	3.2	63.3	61.8	64.1	63.1	1.2	62.03	1.46	72.4
4.75	2.02	38.9	36.5	34.4	36.6	2.3	37.3	36.6	37.6	37.2	0.5	36.88	0.40	48.4
2.36	1.47	22.7	22.0	21.3	22.0	0.7	22.4	21.8	22.3	22.2	0.3	22.08	0.12	29.9
1.18	1.08	14.8	14.7	14.6	14.7	0.1	15.2	14.6	15.1	15.0	0.3	14.83	0.19	17.7
0.6	0.8	10.1	10.0	10.1	10.1	0.1	10.8	10.0	10.3	10.4	0.4	10.22	0.21	10.6
0.3	0.58	7.1	6.9	7.1	7.0	0.1	7.7	7.0	7.3	7.3	0.4	7.18	0.21	6.2
0.15	0.43	5.1	5.0	5.2	5.1	0.1	5.6	5.0	5.1	5.2	0.3	5.17	0.09	4.6
0.075	0.31	3.7	3.5	3.8	3.7	0.2	4.1	3.6	3.6	3.8	0.3	3.72	0.07	3.0
			Sam	nple 1			Sample 2				Ον	erall		
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		4.20	4.21	4.05	4.15	0.09	4.12	4.27	4.14	4.18	0.08	4.17	0.02	5.3

Table A54: Gradations and Asphalt Contents

	1	5	
Test	1" LMS	3/4" LMS	3/8" LMS
Bulk / Apparent Specific Gravit	2.609/2.711	2.626/2.716	2.595/2.712
Absorption, %	1.5	1.3	1.7
LA Abrasion, % Loss	12.7	13.7	11.3
Flat and Elongated, %			
3 to 1	30.9	20.1	25.6
5 to 1	1.8	0.5	11.2
Coarse Aggregate Flow, %	48.7	46.8	48.4
Crushed Content, %			
One Face	100	100	100
Two+ Faces	100	100	100
Data provided by either the age	ncy or determi	ined at NCAT lab	

Table A55: Coarse Aggregate Properties for Project 8

Table A56: Fine Aggregate Properties for Project 8

	1	5
Test	Drag Sand	Man Snad
Bulk / Apparent Specific Gravi	2.520/2.669	2.469/2.729
Absorption, %	2.2	3.9
Fine Aggregate Angularity, %	38.9	44.1
Sand Equivalent	85	77
Data provided by either the age	ncy or determi	ined at NCAT lab

Project 9:

Project 9 was evaluated on 23, 2002 and consisted of the placement of 101.6mm of new hot mix asphalt in the construction of a new state highway. The mix consisted of a 25.0mm nominal maximum aggregate size limestone/sand coarse-graded blend designed at an N_{design} of 100 gyrations resulting in a design asphalt content of 4.5 percent. The asphalt binder that was used was a PG 64-22. One percent baghouse fines was used as an anti-stripping agent. The weather conditions during paving were approximately 95°F (with a heat index of 105°), sunny, with no wind. The mix design and gradation information are provided in Tables A57 and A58.

The project was located approximately 10 miles from the drum plant. Pavement construction was conducted with end dump trucks in conjunction with a Cedarrapids CR461paver and a Roadtec 2500B material transfer device. The mat was being laid at a temperature of about 315°F. Breakdown rolling was conducted by an Ingersoll Rand DD130 roller, starting at a pavement temperature of approximately 250°F, making three to four passes in maximum amplitude and frequency. An Ingersoll Rand PT240R pneumatic tire roller making eight passes and staying right behind the breakdown roller performed intermediate rolling. Finish rolling started when the mat had cooled to a temperature of about 225°F and made three passes, two in low vibratory mode and one in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A59-A63.

Table A57: Project 9	Mix Design Summary
Infor	mation
JMF I.D. Number:	NA
Date(s) on Project:	08-23-02
Number of Stockpiles Used:	5
- Coarse Aggregate Angularity:	NA
- Fine Aggregate Angularity:	NA
Percent RAP:	None
Gradation:	19.0mm Coarse Graded
Ninitial, Ndesign, Nmax:	8, 100, 160
Type Asphalt Binder Used:	PG 64-22
Design Asphalt Binder Content:	4.5
Type Modifier Used:	Ultra Pave 5000
Type Anti-Strip Additive Used:	Hydrated Lime
Percent Anti-Strip Used:	2
Design Voids in Total Mix:	4.0
Design Voids in Mineral Aggregate:	12.9
Design Voids Filled with Asphalt:	69
Tensile Strength Ratio:	93
Dust/Asphalt Ratio:	1.0

Table A59: Design Gradation for Project 9								
Sieve Size	Sieve Size, mm	Recommended Limits	Percent Passing					
11/2 in.	37.5		100					
1 in.	25.0		100					
³ / ₄ in.	19.0		89.5					
1/2 in.	12.5		74.1					
3/8 in	9.5		63.5					
No. 4	4.75		39					
No. 8	2.36		21.8					
No. 16	1.18		12.9					
No. 30	0.6		8.8					
No. 50	0.3		6.2					
No. 100	0.15		4.4					
No. 200	0.075		3.8					

Table A59: Results	from SGC	Comapctions
--------------------	----------	-------------

Table A59:	. Results fro	m SGC Com	apctions										N	design = 100
Project:	9													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descript	ion: 19.0mm C	Joarse			9/5/2003
AC Sp. Gr. ((Gb) =		1			2.653		2.624	1					
		1.028						·						
I	1	1		Masses	'	SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	660	Bulk		Aggregate	AC by	1	,,		1	Eff. AC
Number	Number	Content		III Water	55D (Duik (Omb)		Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
l		1	(gms)	(gms)	(gms)	(Gmb)	(Gmm)	сс	%	pcf	, I	(%
1	1	4.5	4760.0	2742.1	4772.7	2.344	2.474	85.3	10.3	146.3	5.2	14.7	64.3	4.1
1	2	4.5	4768.3	2743.3	4780.4	2.341	2.474	85.2	10.2	146.1	5.4	14.8	63.6	4.1
1	3	4.5	4756.1	2747.2	4765.5	2.356	2.474	85.8	10.3	147.0	4.7	14.2	66.6	4.1
		ı	<u> </u>											
2	1	4.5	4794.5	2809.0	4800.4	2.408	2.479	87.6	10.5	150.2	2.9	12.4	76.7	4.1
2	2	4.5	4775.8	2770.0	4793.3	2.360	2.479	85.9	10.3	147.3	4.8	14.1	66.1	4.1
2	3	4.5	4773.0	2794.4	4777.5	2.407	2.479	87.6	10.5	150.2	2.9	12.4	76.5	4.1
Input By:													Checked By	:
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter		VMA = Voids	in Mineral Ar	Jgregate					
TMD = Theo	retical Maxim	um Density		AC = Aspha	It Cement		VFA = Voids	Filled With A	sphalt Cemer	nt				
am = aram				pcf = pound	s per cubic for	ot	VTM = Voids	in Total Mix						

Table A60: Results	of Height San	nple SGC (Compactions
--------------------	---------------	------------	-------------

Table A60:	Results of I	Height Sampl	le SGC Compactio	ons							N	design = 100		
Project:	9											Date		
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse): Bulk Sp. Gr. (Gsb): Mix Description: 19.0mm Coarse							9/5/2003		
AC Sp. Gr. (Gb) =														
		1.028	i i i i i i i i i i i i i i i i i i i		2.653		2.624							
				Masses		SPECIF	IC GRAVITIES		VOIDS					
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %		
1	1	4.4	4204.9	2426.2	4219.8	2.344	2.474	10.0	5.2	6.8	55	4.0		
1	2	4.4	4180.9	2456.9	4185.8	2.418	2.474	10.4	2.3	3.3	6	4.0		
1	3	4.4	4079.9	2379.4	4088.2	2.388	2.474	10.2	3.5	4.9	23	4.0		
1	4	4.4	4076.5	2375.1	4084.7	2.384	2.474	10.2	3.6	4.9	57	4.0		
1	5	4.4	3962.4	2277.1	3975.9	2.332	2.474	10.0	5.7	7.3	102	4.0		
1	6	4.4	3956.5	2262.1	3973.7	2.312	2.474	9.9	6.6	8.0	202	4.0		
1	7	4.4	3899.8	2203.2	3918.6	2.273	2.474	9.7	8.1	9.5	334	4.0		
1	8	4.4	3900.4	2206.3	3920.8	2.275	2.474	9.7	8.0	9.8	166	4.0		
2	1	4.5	4065.0	2358.6	4074.1	2.370	2.479	10.4	4.4	6.1	0	4.1		
2	2	4.5	4077.1	2369.8	4086.0	2.376	2.479	10.4	4.2	5.6	47	4.1		
2	3	4.5	3956.5	2272.5	3977.9	2.320	2.479	10.2	6.4	8.3	86	4.1		
2	4	4.5	3959.7	2271.6	3977.9	2.321	2.479	10.2	6.4	7.7	81	4.1		
2	5	4.5	3898.4	2228.7	3927.7	2.295	2.479	10.0	7.4	9.4	231	4.1		
2	6	4.5	3928.1	2250.8	3955.4	2.304	2.479	10.1	7.0	8.9	174	4.1		
2	7	4.5	3895.4	2219.3	3918.5	2.292	2.479	10.0	7.5	9.3	259	4.1		
2	8	4.5	3834.3	2256.5	3954.3	2.258	2.479	9.9	8.9	7.9	101	4.1		
Input By:														
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter									
TMD = Theo	retical Maximu	um Density		AC = Aspha	It Cement									
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix						
Gradation Sample 1			e 1				Sample	2		Ον	erall			
--------------------	-------------------------	-------	-------	--------	-------	---------	--------	-------	--------	-------	---------	-------	---------	---------
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
19	3.76	96.4	90.5	90.2	92.4	3.5	89.6	89.9	93.8	91.1	2.3	91.7	0.9	89.5
12.5	3.12	83.3	80.1	78.3	80.6	2.5	81.3	81.9	81.9	81.7	0.3	81.1	0.8	74.2
9.5	2.75	71.3	68.9	64.7	68.3	3.3	72.0	70.8	72.3	71.7	0.8	70.0	2.4	63.5
4.75	2.02	44.5	42.6	40.1	42.4	2.2	45.2	45.6	46.1	45.6	0.5	44.0	2.3	39.0
2.36	1.47	21.7	21.8	20.7	21.4	0.6	24.4	24.3	24.2	24.3	0.1	22.9	2.1	21.8
1.18	1.08	13.0	13.4	12.7	13.0	0.4	15.3	15.3	14.9	15.2	0.2	14.1	1.5	12.9
0.6	0.8	8.8	9.4	8.8	9.0	0.3	10.9	11.0	10.5	10.8	0.3	9.9	1.3	8.8
0.3	0.58	6.5	7.1	6.6	6.7	0.3	8.4	8.5	7.9	8.3	0.3	7.5	1.1	6.2
0.15	0.43	5.0	5.7	5.1	5.3	0.4	6.6	6.7	6.1	6.5	0.3	5.9	0.8	4.4
0.075	0.31	3.9	4.4	3.9	4.1	0.3	5.1	5.2	4.5	4.9	0.4	4.5	0.6	3.8
			Sam	nple 1				Sar	nple 2			Ον	erall	
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		4.40	4.60	4.20	4.40	0.20	4.60	4.40	4.60	4.53	0.12	4.47	0.09	4.5

Table A61: Gradations and Asphalt Contents

	I	J			
Test	1 1/2" LMS	3/4" LMS	1/2" LMS		
Bulk / Apparent Specific Gravity	2.667/2.714	2.664/2.717	2.640/2.708		
Absorption, %	0.6	0.7	1		
LA Abrasion, % Loss	35.5	29.4	32.8		
Flat and Elongated, %					
3 to 1	17.3	18.4	52.4		
5 to 1		8.7	1.8		
Coarse Aggregate Flow, %	46.6	47.5	47.6		
Crushed Content, %					
One Face	100	100	100		
Two+ Faces	100	100	100		
Data provided by either the agency or determined at NCAT lab					

Table A62: Coarse Aggregate Properties for Project 9

Table A63: Fine Aggregate Properties for Project 9

	J			
Test	1/2" Base	Man Snad		
Bulk / Apparent Specific Gravity	2.569/2.681	2.611/2.847		
Absorption, %	1.8	3.2		
Fine Aggregate Angularity, %	42.4	44		
Sand Equivalent 100 100				
Data provided by either the agency or determined at NCAT lab				

Project 10:

Project 10 was evaluated on August 5, 2002 and consisted of the placement of 57.2mm of new hot mix asphalt over a granular base in the westbound lane of an existing highway. The mix consisted of a 19.0mm nominal maximum aggregate size coarsegraded blend designed at an N_{design} of 100 gyrations resulting in a design asphalt content of 5.6 percent. The asphalt binder that was used was a PG 64-34. One percent hydrated lime was used as an anti-stripping agent. The weather conditions during paving were approximately 90-95°F, mostly sunny, and windy. The mix design and gradation information are provided in Tables A64 and A65.

The project was located approximately 25 miles from the batch plant. Windrow paving construction was accomplished with belly dump trucks in conjunction with a Champion 1110W paver configured with a windrow elevator and a Roadtec SB2500B material transfer device. Breakdown rolling was originally started with an Ingersoll Rand DD130 roller, but was later replaced with a Caterpillar 634C roller due to the original roller breaking down. Breakdown rolling was being conducted in vibratory mode as well. Intermediate rolling was conducted by a Caterpillar PS360B pneumatic tire roller. Finish rolling was conducted another Caterpillar 634C roller, starting at a pavement temperature of about 130F, in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A66-A70.

Table A64: Project 10 Mix Design Summary						
Information						
JMF I.D. Number:	NA					
Date(s) on Project:	8/5/02					
Number of Stockpiles Used:	NA					
- Coarse Aggregate Angularity:	NA					
- Fine Aggregate Angularity:	NA					
Percent RAP:	None					
Gradation:	19.0mm Coarse Graded					
Ninitial, Ndesign, Nmax:	8, 100, 160					
Type Asphalt Binder Used:	PG 64-34					
Design Asphalt Binder Content:	5.7					
Type Modifier Used:	NA					
Type Anti-Strip Additive Used:	Hydrated Lime					
Percent Anti-Strip Used:	None					
Design Voids in Total Mix:	NA					
Design Voids in Mineral Aggregate:	NA					
Design Voids Filled with Asphalt:	NA					
Tensile Strength Ratio:	NA					
Dust/Asphalt Ratio:	NA					

Table A65: Design Gradation for Project 10							
Sieve Size	Sieve Size, mm	Recommended Limits	Percent Passing				
11/2 in.	37.5		100				
1 in.	25.0		100				
³ ⁄ ₄ in.	19.0		100				
1/2 in.	12.5	69-81	75				
3/8 in	9.5						
No. 4	4.75						
No. 8	2.36	29-39	34				
No. 16	1.18						
No. 30	0.6						
No. 50	0.3	9-15	12				
No. 100	0.15						
No. 200	0.075	4.9-8.9	6.9				

Table A66: 1	Results	from	SGC	Compactions
--------------	---------	------	-----	-------------

Ndesign = 100 Date Project: 10 App. Sp. Gr. (Gsa) Eff. Sp. Gr. (Gse): Bulk Sp. Gr. (Gsb): Mix Description: 19.0mm Coarse 9/5/2003 AC Sp. Gr. (Gb) = 2.663 1.028 Masses SPECIFIC GRAVITIES VOLUMES AT Ndes VOIDS Eff. AC Sample Specimen Asphalt Aggregate AC by In Air In Water SSD Bulk TMD VFA. % Number Content Volume Volume Unit Weight VTM, % VMA. % Content Number (gms) (gms) (gms) (Gmb) (Gmm) % % pcf СС 4989.5 2.322 12.9 2870.2 5019.2 2.442 144.9 5.7 4.9 1 1 1 2 5.7 4914.6 2818.5 4957.4 2.298 2.442 12.7 143.4 5.9 5.7 4772.1 2738.6 4819.2 2.294 2.442 12.7 143.1 1 3 6.1 Checked By: Input By: SSD = Saturated Surface Dry cc = cubic centimeter VMA = Voids in Mineral Aggregate TMD = Theoretical Maximum Density AC = Asphalt Cement VFA = Voids Filled With Asphalt Cement pcf = pounds per cubic foot VTM = Voids in Total Mix gm = gram

Table A67: Results of 1	Height Sample	SGC Com	pactions
-------------------------	---------------	---------	----------

Table A67:	: Results of J	Height Sampl	e SGC Compactic	ons							N	design = 100
Project:	10											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 19.0mm Coar	se		9/5/2003
AC Sp. Gr. (Gb) =	,						1				
1		1.028		L	2.663	. <u> </u>	'					
		· · · · · · · · · · · · · · · · · · ·		Masses		SPECI	FIC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	5.7	2258.9	1301.3	2284.8	2.297	2.442	12.7	5.9	8.3	931	
1	2	5.7	2262.1	1297.5	2294.2	2.270	2.442	12.6	7.1	11.7	5389	
1	3	5.7	2143.4	1223.9	2170.9	2.263	2.442	12.5	7.3	11.3	1146	
1	4	5.7	2162.6	1243.5	2192.9	2.278	2.442	12.6	6.7	10.5	2029	
1	5	5.7	2123.6	1212.2	2147.0	2.272	2.442	12.6	7.0	10.1	1122	
1	6	5.7	2126.6	1219.5	2152.7	2.279	2.442	12.6	6.7	10.2	909	
1	7	5.7	1906.5	1091.5	1971.5	2.166	2.442	12.0	11.3	18.9	9908	
1	8	5.7	1957.3	1113.4	2002.3	2.202	2.442	12.2	9.8	16.3	3308	
Input By:												
SSD = Saturated Surface Dry cc = cubic centimeter												
TMD = Theoretical Maximum Density AC = Asphalt Cement			It Cement									
am = aram				$pcf = pound^{\prime}$	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradation			Sample 1				
Sieve Size (mm)	Sieve^0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0
12.5	3.12	77.2	78.7	77.7	77.9	0.8	75.0
9.5	2.75	57.7	62.1	62.9	60.9	2.8	
4.75	2.02	43.1	46.0	45.3	44.8	1.5	
2.36	1.47	29.7	31.7	31.2	30.9	1.0	34.0
1.18	1.08	20.9	22.3	21.8	21.7	0.7	
0.6	0.8	15.6	16.7	16.2	16.2	0.6	
0.3	0.58	11.9	12.8	12.3	12.3	0.5	12.0
0.15	0.43	9.0	9.1	8.8	9.0	0.2	
0.075	0.31	5.5	5.8	5.6	5.6	0.2	6.9
			San	nple 1			
Asphalt C	Rep1	Rep2	Rep3	Avg.	Std Dev	Opt. AC	
		5.30	5.60	5.60	5.50	0.17	5.7

Table A68: Gradations and Asphalt Contents

Test	CA	IA		
Bulk / Apparent Specific Gravit	2.510/2.687	2.504/2.705		
Absorption, %	2.63	2.96		
LA Abrasion, % Loss	18.2	13.3		
Flat and Elongated, %				
3 to 1	22.6	45.2		
5 to 1	3.2	9		
Coarse Aggregate Flow, %	46.6	48.2		
Crushed Content, %				
One Face	9.1	5.6		
Two+ Faces	90.9	94.4		
Data provided by either the agency or determined at NCAT lab				

Table A69: Coarse Aggregate Properties for Project 10

Table A70: Fine Aggregate Properties for Project 10

	1	5		
Test	Fines			
Bulk / Apparent Specific Gravi	2.557/2.737			
Absorption, %	2.6			
Fine Aggregate Angularity, %	49.6			
Sand Equivalent	84			
Data provided by either the agency or determined at NCAT lab				

Project 11:

Project 11 was evaluated on August 8, 2002 and consisted of the mill and fill placement of 38.1mm of new hot mix asphalt in the southbound lane of an interstate highway. The mix consisted of a 19.0mm nominal maximum aggregate size coarsegraded blend designed at an N_{design} of 125 gyrations resulting in a design asphalt content of 4.9 percent. The asphalt binder that was used was a PG 64-34. One percent hydrated lime was used as an anti-stripping agent. The weather conditions during paving were approximately 90-95°F, sunny, and windy. The mix design and gradation information are provided in Tables A71 and A72.

The project was located approximately eight miles from the drum plant. Windrow paving construction was accomplished with belly dump trucks in conjunction with a paver configured with a windrow elevator. Breakdown rolling was conducted with an Ingersoll Rand DD130 roller making four passes in maximum amplitude and frequency. The mat was being laid at a temperature of about 300F with breakdown rolling beginning at a temperature of about 250F. Intermediate rolling was accomplished by an Ingersoll Rand Propac Series 100DA roller making five passes, alternating between static and vibratory modes. Finish rolling was performed in medium amplitude and frequency by an Ingersoll Rand DD130 roller, making four to five passes.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A73-A77.

Table A71: Project 11 Mix Design Summary						
Information						
JMF I.D. Number:	IM-15-4(40)169					
Date(s) on Project:	8/8/02					
Number of Stockpiles Used:	NA					
- Coarse Aggregate Angularity:	NA					
- Fine Aggregate Angularity:	NA					
Percent RAP:	None					
Gradation:	19.0mm Coarse Graded					
Ninitial, Ndesign, Nmax:	9, 125, 205					
Type Asphalt Binder Used:	PG 64-34					
Design Asphalt Binder Content:	4.9					
Type Modifier Used:	NA					
Type Anti-Strip Additive Used:	Hydrated Lime					
Percent Anti-Strip Used:	None					
Design Voids in Total Mix:	NA					
Design Voids in Mineral Aggregate:	14.3					
Design Voids Filled with Asphalt:	83					
Tensile Strength Ratio:	NA					
Dust/Asphalt Ratio:	1.2					

Table A	72: Design G	radation for Pro	ject 11
Sieve Size	Sieve Size, mm	Recommended Limits	Percent Passing
11/2 in.	37.5		100
1 in.	25.0		100
³ / ₄ in.	19.0		99
1/2 in.	12.5		87
3/8 in	9.5		76
No. 4	4.75		40
No. 8	2.36		23
No. 16	1.18		18
No. 30	0.6		10
No. 50	0.3		
No. 100	0.15		
No. 200	0.075		4.9

Table A72: F	Results	from	SGC	Compactions
--------------	---------	------	-----	-------------

Table A72:	. Results fro	m SGC Com	pactions										N	ldesign = 125
Project:	11		·											Date
			App. Sp. Gr.	. (Gsa)	Eff. Sp. Gr. ((Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descrip	tion: 19.0mm C	Coarse			9/5/2003
AC Sp. Gr. ((Gb) =					2.654		2.639						
<u> </u>		1.028												
· · ·	۱ I			Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	Aggregate Volume cc	AC by Volume %	Unit Weight, pcf	VTM, %	VMA, %	VFA, %	Eff. AC Content %
1	1	4.9	4816.8	2790.8	4832.7	2.359	2.468	85.0	11.2	147.2	4.4	15.0	70.5	4.7
1	2	4.9	4797.4	2779.1	4817.4	2.354	2.468	84.8	11.2	146.9	4.6	15.2	69.5	4.7
1	3	4.9	4794.3	2777.7	4805.6	2.364	2.468	85.2	11.3	147.5	4.2	14.8	71.6	4.7
					1						, ,	,		
2	1	4.9	4743.1	2781.8	4746.4	2.414	2.465	87.0	11.5	150.7	2.1	13.0	84.2	4.7
2	2	4.9	4764.3	2791.4	4769.5	2.409	2.465	86.8	11.5	150.3	2.3	13.2	82.7	4.7
2	3	4.9	4767.2	2791.6	4771.9	2.407	2.465	86.8	11.5	150.2	2.3	13.2	82.3	4.7
											·	· · ·		
3	1	4.9	4776.9	2795.5	4785.5	2.400	2.458	86.5	11.4	149.8	2.3	13.5	82.7	4.7
3	2	4.9	4773.2	2797.4	4779.4	2.408	2.458	86.8	11.5	150.3	2.0	13.2	84.7	4.7
3	3	4.9	4775.1	2797.4	4782.4	2.406	2.458	86.7	11.5	150.1	2.1	13.3	84.0	4.7
Input By:									· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		Checked By	<i>r</i> :
SSD = Satur	ated Surface !	Dry		cc = cubic c/	entimeter		VMA = Voids	in Mineral Ar	ggregate					
TMD = Theo	retical Maxim	um Density		AC = Aspha'	It Cement		VFA = Voids	Filled With A	sphalt Cemer	nt				
am = aram				pcf = pound	s per cubic for	ot	VTM = Voids	in Total Mix						

1 able A /4: Results of Heigh	it Sample	SGC	Compactions
-------------------------------	-----------	-----	-------------

Table A74	Results of l	Height Samp	le SGC Compactio	ons							N	design = 100
Project:	11											Date
AC Sp. Gr. (Gb) =		App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):	Eff. Sp. Gr. (Gse):		Mix Descript	ion: 19.0mm Coar	se		9/5/2003
, to op: on (00)	1.028		1	2.655		2.639					
				Masses		SPEC	FIC GRAVITIES	VOIDS				
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	4.5	1529.1	874.2	1560.6	2.228	2.468	9.8	9.7	14.3	3829	4.3
1	2	4.5	1526.4	876.2	1545.0	2.282	2.468	10.0	7.5	11.4	1054	4.3
1	3	4.5	1428.1	821.5	1447.3	2.282	2.468	10.0	7.5	12.0	3508	4.3
1	4	4.5	1426.9	820.9	1444.1	2.290	2.468	10.0	7.2	10.9	991	4.3
1	5	4.5	1327.9	762.8	1363.3	2.211	2.468	9.7	10.4	17.0	6965	4.3
1	6	4.5	1328.3	764.0	1361.5	2.223	2.468	9.7	9.9	16.3	6927	4.3
1	7	4.5	1300.7	751.3	1333.1	2.236	2.468	9.8	9.4	17.7	6854	4.3
1	8	4.5	1299.7	746.3	1337.0	2.200	2.468	9.6	10.8	18.1	6922	4.3
2	1	4.7	1464.5	834.6	1475.4	2.285	2.458	10.4	7.0	8.9	173	4.5
2	2	4.7	1470.5	841.4	1481.1	2.299	2.458	10.5	6.5	8.8	242	4.5
2	3	4.7	1367.3	779.3	1400.0	2.203	2.458	10.1	10.4	14.2	2304	4.5
2	4	4.7	1368.1	782.6	1401.8	2.209	2.458	10.1	10.1	14.3	2304	4.5
2	5	4.7	1326.9	755.8	1367.8	2.168	2.458	9.9	11.8	16.7	3431	4.5
2	6	4.7	1327.3	752.8	1363.6	2.173	2.458	9.9	11.6	16.7	6896	4.5
2	7	4.7	1287.6	732.5	1331.0	2.151	2.458	9.8	12.5	17.9	6855	4.5
2	8	4.7	1286.6	722.9	1324.2	2.140	2.458	9.8	12.9	18.1	6803	4.5
3	1	4.7	1449.3	826.3	1465.9	2.266	2.465	10.4	8.1	11.9	519	4.5
3	2	4.7	1446.3	827.0	1459.8	2.286	2.465	10.4	7.3	9.4	389	4.5
3	3	4.7	1399.3	791.8	1419.0	2.231	2.465	10.2	9.5	12.6	1036	4.5
3	4	4.7	1398.0	790.8	1418.5	2.227	2.465	10.2	9.6	13.0	1026	4.5
3	5	4.7	1347.7	763.9	1379.7	2.189	2.465	10.0	11.2	14.8	3435	4.5
3	6	4.7	1348.7	763.1	1383.5	2.174	2.465	9.9	11.8	15.1	3444	4.5
3	7	4.7	1298.2	733.5	1332.4	2.168	2.465	9.9	12.1	18.1	5884	4.5
3	8	4.7	1296.1	732.6	1333.5	2.157	2.465	9.9	12.5	18.0	5884	4.5
Input By:							•					
SSD = Satur	ated Surface I	Dry		cc = cubic ce	entimeter							
TMD = Theo	retical Maxim	um Density		AC = Aspha	lt Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Table A75: Gradations and Asphalt Contents

Gradat	ion			Sample	e 1				Sample	2				Samp	le 3		Ov	erall	
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.00	100.00	100.00	100.00	0.0	100.00	100.00	100.00	100.00	0.0	100.00	100.00	100.00	100.00	0.0	100.00	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
19	3.76	97.5	100	99.4	99.0	1.3	98.9	98.3	98.4	98.5	0.3	98.3	98.3	99.6	98.7	0.8	98.7	0.22	100.0
12.5	3.12	87.3	84.7	88.3	86.8	1.9	85.8	90.5	88.1	88.1	2.4	88.2	88.5	91.2	89.3	1.7	88.1	1.27	99.0
9.5	2.75	71.1	69.6	74	71.6	2.2	74.5	79.4	79.2	77.7	2.8	76.6	77.6	80.7	78.3	2.1	75.9	3.73	87.0
4.75	2.02	35	34.1	37.6	35.6	1.8	42.4	45.2	44.4	44.0	1.4	41.4	41.9	44.9	42.7	1.9	40.8	4.55	76.0
2.36	1.47	21.2	21	22.1	21.4	0.6	25.5	26.7	26.2	26.1	0.6	25.7	25.8	27	26.2	0.7	24.6	2.72	40.0
1.18	1.08	15.9	15.9	16.6	16.1	0.4	19.8	20.5	20	20.1	0.4	20.1	20	20.9	20.3	0.5	18.9	2.36	23.0
0.6	0.8	12.7	12.7	13.3	12.9	0.3	16.2	16.7	16.3	16.4	0.3	16.5	16.4	17	16.6	0.3	15.3	2.09	18.0
0.3	0.58	9.1	9.2	9.6	9.3	0.3	12	12.5	12.1	12.2	0.3	12.4	12.3	12.7	12.5	0.2	11.3	1.76	10.0
0.15	0.43	5.6	5.6	5.9	5.7	0.2	7.7	8.2	7.6	7.8	0.3	8.2	8.2	8.2	8.2	0.0	7.2	1.35	
0.075	0.31	3.3	3.3	3.5	3.4	0.1	4.7	5.2	4.6	4.8	0.3	5.3	5.3	5.3	5.3	0.0	4.5	1.01	4.9
			San	iple 1				San	iple 2				Sa	mple 3			Ov	erall	
Asphalt C	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		4.80	4.20	4.40	4.47	0.31	4.70	4.70	4.70	4.70	0.00	4.70	4.70	4.70	4.70	0.00	4.62	0.13	4.9

Test	3/4"	9/16"	7/16"
Bulk / Apparent Specific Gravity	2.614/2.670	2.568/2.679	2.531/2.675
Absorption, %	0.8	1.6	2.9
LA Abrasion, % Loss	22.2	20.4	19.4
Flat and Elongated, %			
3 to 1	7	16.6	16.3
5 to 1	0.67	1.5	3.4
Coarse Aggregate Flow, %	46.4	45.6	45
Crushed Content, %			
One Face	100	100	100
Two+ Faces	100	100	100
Data provided by either the agen	cy or determin	ed at NCAT lab	

Table A76: Coarse Aggregate Properties for Project 11

Table A77: Fine Aggregate Properties for Project 11

	J	
Test	Type 3	
Bulk / Apparent Specific Gravit	2.493/2.687	
Absorption, %	2.9	
Fine Aggregate Angularity, %	45	
Sand Equivalent	56	
Data provided by either the agen	cy or determin	ned at NCAT lab

Project 12:

Project 12 was evaluated on July 23, 2002 and consisted of the mill and fill placement of 60.0mm of new hot mix asphalt in the northbound lane of an interstate highway. The mix consisted of a 25.0mm nominal maximum aggregate size coarse-graded limestone/sand Stone Matrix Asphalt (SMA) blend designed using the Marshall mix design method, using a blow count of 50 blows. For research purposes, however, this number was converted to an N_{design} of 50 gyrations, resulting in a design asphalt content of 5.5 percent. The asphalt binder that was used was a PG 76-22. 0.3 percent mineral fiber was added to the mix. The weather conditions during paving were approximately 80-85°F, mostly sunny, with a slight breeze throughout the day. The mix design and gradation information are provided in Tables A78 and A79.

The project was located approximately five miles from the CMI batch plant. Breakdown rolling began at a pavement temperature of 315F and was conducted with an Dyanpac CC522 roller operating in maximum amplitude and frequency. Intermediate rolling was also accomplished by a Dynapac CC522 roller, but began when the mat was at a temperature of approximately 230F. Finish rolling was accomplished by making three to four passes in static mode by an Ingersoll Rand ST105 roller.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are presented in Tables A80-A84.

Table A75: Project 12	Mix Design Summary
Infor	nation
JMF I.D. Number:	NA
Date(s) on Project:	7/23/02
Number of Stockpiles Used:	4
- Coarse Aggregate Angularity:	100% 2+ Crushed Faces
- Fine Aggregate Angularity:	47
Percent RAP:	10
Gradation:	25.0mm SMA
Ninitial, Ndesign, Nmax:	50 Blow Marshall
Type Asphalt Binder Used:	PG 76-22
Design Asphalt Binder Content:	5.5
Type Modifier Used:	None
Type Anti-Strip Additive Used:	Mineral Fiber
Percent Anti-Strip Used:	0.3
Design Voids in Total Mix:	4.0
Design Voids in Mineral Aggregate:	17.0
Design Voids Filled with Asphalt:	NA
Tensile Strength Ratio:	86
Dust/Asphalt Ratio:	NA

Table A	79: Design G	radation for Pro	ject 12
Sieve Size	Sieve Size, mm	Recommended Limits	Percent Passing
11/2 in.	37.5		100
1 in.	25.0		100
³ / ₄ in.	19.0		90
¹ / ₂ in.	12.5		74
3/8 in	9.5		54
No. 4	4.75		28
No. 8	2.36		21
No. 16	1.18		17
No. 30	0.6		15
No. 50	0.3		11
No. 100	0.15		9
No. 200	0.075		8.0

Table A80:	Results fr	om SGC (Compactions
------------	------------	----------	-------------

Table A80	: Results f	irom SGC Cr	ompaction	S									1	Ndesign = 50
Project:	12								1					Date
_			App. Sp. Gr.	. (Gsa)	Eff. Sp. Gr. /	(Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descrip	tion: 25.0mm §	ЗMA			9/11/2003
AC Sp. Gr. ((Gb) =					2.784		2.784						
		1.028	ś											
·	(Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		!
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	Aggregate Volume	AC by Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Eff. AC Content
	<u>'</u> ــــــــــــــــــــــــــــــــــــ	<u> </u>	1000.1		1007.1	, <u>,</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	CC	<u>%</u>	рст	<u> </u>		<u> </u>	%
1	<u> </u>	5.1	4992.1	3018.9	4997.4	2.523	2.563	86.0	12.5	157.4	1.6	14.0	88.9	5.1
1	2	5.1	4980.5	3007.4	4991.4	2.510	2.563	85.6	12.5	156.6	2.1	14.4	85.8	5.1
1	3	5.1	4996.7	3024.0	5001.4	2.527	2.563	86.1	12.5	157.7	1.4	13.9	89.8	5.1
										· /				,,
2	1	4.7	4974.9	3038.4	4976.7	2.567	2.578	87.9	11.7	160.2	0.4	12.1	96.4	4.7
2	2	4.7	4974.8	3034.7	4976.3	2.562	2.578	87.7	11.7	159.9	0.6	12.3	95.0	4.7
2	3	4.7	4990.5	3022.6	4996.1	2.529	2.578	86.6	11.6	157.8	1.9	13.4	85.8	4.7
			1		1	1	1		1	, T	í			
3	1	5.1	4984.7	3032.9	4985.9	2.552	2.558	87.0	12.7	159.3	0.2	13.0	98.3	5.1
3	2	5.1	4980.1	3024.2	4982.0	2.544	2.558	86.7	12.6	158.7	0.6	13.3	95.8	5.1
3	3	5.1	4989.4	3011.6	4999.3	2.510	2.558	85.6	12.5	156.6	1.9	14.4	87.0	5.1
Input By:			-	·	-	-	-	-	<u> </u>	-			Checked By	<i>j</i> :
SSD = Satur	ated Surface '	Dry		cc = cubic c	entimeter		VMA = Voids	s in Mineral Ar	ggregate					
TMD = Theo	retical Maxim	um Density		AC = Aspha	It Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
am = aram				pcf = pound	s per cubic fo	ot	VTM = Void	in Total Mix ،						

Table A81: Re	sults of Heiah	t Sample SGC	Compactions

Table A81	: Results o	of Height Sa	mple SGC Comp	oactions								Ndesign = 50
Project:	12											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 25.0mm SMA	L Contraction of the second seco		9/11/2003
AC Sp. Gr. (Gb) =			•								
		1.028	3		2.811		2.784				-	
				Masses		SPECI	FIC GRAVITIES		VC	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	5.1	2470.3	1492.8	2472.1	2.523	2.563	12.5	1.6	2.2	0	4.8
1	2	5.1	2470.3	1495.1	2472.7	2.527	2.563	12.5	1.4	2.4	0	4.8
1	3	5.1	2366.1	1412.7	2373.3	2.463	2.563	12.2	3.9	5.1	178	4.8
1	4	5.1	2366.4	1418.8	2374.6	2.476	2.563	12.3	3.4	5.3	165	4.8
1	5	5.1	2321.3	1379.0	2332.1	2.436	2.563	12.1	5.0	6.6	119	4.8
1	6	5.1	2330.3	1396.3	2339.5	2.471	2.563	12.3	3.6	6.1	562	4.8
1	7	5.1	2287.9	1356.9	2302.7	2.419	2.563	12.0	5.6	7.8	640	4.8
1	8	5.1	2293.0	1366.1	2305.5	2.441	2.563	12.1	4.8	7.0	746	4.8
2	1	4.7	2470.4	1497.5	2474.0	2.530	2.578	11.6	1.9	2.7	0	4.4
2	2	4.7	2471.6	1499.3	2473.3	2.538	2.578	11.6	1.6	4.5	0	4.4
2	3	4.7	2378.1	1426.7	2384.2	2.484	2.578	11.4	3.7	5.0	102	4.4
2	4	4.7	2375.4	1425.3	2382.1	2.483	2.578	11.4	3.7	5.5	67	4.4
2	5	4.7	2338.4	1399.3	2350.8	2.458	2.578	11.2	4.7	7.2	344	4.4
2	6	4.7	2327.3	1386.4	2337.5	2.447	2.578	11.2	5.1	8.8	320	4.4
2	7	4.7	2269.3	1346.4	2282.6	2.424	2.578	11.1	6.0	9.2	298	4.4
2	8	4.7	2257.0	1328.4	2273.4	2.388	2.578	10.9	7.4	12.5	2231	4.4
3	1	5.1	2440.4	1470.4	2443.7	2.507	2.558	12.4	2.0	3.0	13	4.8
3	2	5.1	2434.5	1465.4	2437.0	2.506	2.558	12.4	2.0	3.1	21	4.8
3	3	5.1	2334.5	1384.1	2342.3	2.436	2.558	12.1	4.8	6.3	86	4.8
3	4	5.1	2331.6	1387.4	2340.2	2.447	2.558	12.1	4.3	6.1	153	4.8
3	5	5.1	2293.1	1361.3	2305.1	2.430	2.558	12.1	5.0	7.4	357	4.8
3	6	5.1	2310.1	1367.2	2319.6	2.426	2.558	12.0	5.2	6.9	79	4.8
3	7	5.1	2270.9	1345.3	2284.1	2.419	2.558	12.0	5.4	9.5	358	4.8
3	8	5.1	2268.9	1335.6	2279.9	2.403	2.558	11.9	6.1	8.4	85	4.8
Input By:	•										•	
SSD = Satur	ated Surface	Dry		cc = cubic ce	entimeter							
TMD = Theo	oretical Maxim	um Density		AC = Aspha	t Cement							
gm = gram		-		pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Table A82: Gradations and Asphalt Contents

Gradatio	on			Sample	1				Sample	2		Sample 3					Ov		
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.00	100.0
25.0	4.26	100.0	100.0	97.3	99.1	1.6	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	99.7	0.52	100.0
19	3.76	86.9	92.9	83.3	87.7	4.8	81.2	81.0	86.7	83.0	3.2	88.3	89.4	89.0	88.9	0.6	86.5	3.14	90.0
12.5	3.12	67.1	79.0	66.2	70.8	7.1	64.8	63.1	68.9	65.6	3.0	68.0	70.3	68.9	69.1	1.2	68.5	2.63	74.0
9.5	2.75	53.1	63.2	52.5	56.3	6.0	51.3	51.0	54.7	52.3	2.1	54.5	57.9	55.6	56.0	1.7	54.9	2.20	54.0
4.75	2.02	28.4	32.2	27.5	29.4	2.5	27.0	27.4	28.0	27.5	0.5	29.6	31.0	30.2	30.3	0.7	29.0	1.43	28.0
2.36	1.47	22.7	25.3	22.2	23.4	1.7	21.9	22.4	22.7	22.3	0.4	23.6	24.4	23.8	23.9	0.4	23.2	0.81	21.0
1.18	1.08	19.3	21.2	19.2	19.9	1.1	18.9	18.8	19.6	19.1	0.4	20.2	20.8	20.3	20.4	0.3	19.8	0.67	17.0
0.6	0.8	16.0	17.4	16.2	16.5	0.8	15.9	15.8	16.4	16.0	0.3	17.0	17.6	16.8	17.1	0.4	16.6	0.55	15.0
0.3	0.58	11.8	12.7	12.4	12.3	0.5	12.1	11.9	12.5	12.2	0.3	13.2	13.5	12.7	13.1	0.4	12.5	0.52	11.0
0.15	0.43	8.0	8.6	8.6	8.4	0.3	8.7	8.3	8.9	8.6	0.3	9.8	9.9	9.3	9.7	0.3	8.9	0.67	9.0
0.075	0.31	5.2	5.6	5.7	5.5	0.3	6.0	5.7	6.1	5.9	0.2	7.1	7.1	6.6	6.9	0.3	6.1	0.74	8.0
			Sam	ple 1				Sam	ple 2				San	nple 3			Ov	erall	
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		5.00	5.40	4.90	5.10	0.26	4.60	4.70	4.80	4.70	0.10	5.10	5.20	5.10	5.13	0.06	4.98	0.24	5.5

66 6	1	
Test	#78 LMS	#57 LMS
Bulk / Apparent Specific Gravit	2.806/2.850	2.833/2.840
Absorption, %	0.56	0.22
LA Abrasion, % Loss	28.1	28.4
Flat and Elongated, %		
3 to 1	14.2	3.9
5 to 1	1.6	
Coarse Aggregate Flow, %	46.3	45.8
Crushed Content, %		
One Face	100	100
Two+ Faces	100	100
Data provided by either the age	ency or determi	ined at NCAT lab

Table A83: Coarse Aggregate Properties for Project 12

Table A84: Fine Aggregate Properties for Project 12

	P	J===						
Test	M-10's	RAP						
Bulk / Apparent Specific Gravi	2.661/2.715	2.558/2.696						
Absorption, %	0.74	2						
Fine Aggregate Angularity, %	48.5	42.4						
Sand Equivalent	65	64						
Data provided by either the agency or determined at NCAT lab								

Project 13:

Project 13 was evaluated on August 29, 2002 and consisted of the placement of 69.9mm of new hot mix asphalt in the construction of a new lane in the eastbound lane of an existing highway. The mix consisted of a 25.0mm nominal maximum aggregate size fine-graded limestone/sand blend designed at an N_{design} of 100 gyrations, resulting in a design asphalt content of 3.9 percent. One percent baghouse fines was used as an anti-stripping agent. The asphalt binder that was used was a PG 67-22 (unmodified). The weather conditions during paving were approximately 80°F, overcast, with a slight chance of rain throughout the day. The mix design and gradation information are provided in Tables A85 and A86.

The project was located approximately 12 miles from the ASTEC Double Barrel drum plant. Dump trucks fed the mix to a Cedarrapids 451 paver, which in turn laid the mix down at a temperature of about 295F. Breakdown rolling began immediately after the mix was laid down and was conducted in maximum amplitude and frequency by an Ingersoll Rand DD110 roller, making three passes, two while in vibratory mode and one in static mode. It was observed that the mix was moving a great deal when the rollers hit it at temperatures above 165F, so finish rolling began when the mix had cooled to a temperature of around 150F, and was performed by an Ingersoll Rand DD90, making two passes in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A87-A91.

Table A85: Project 13 Mix Design Summary										
Information										
JMF I.D. Number:	NA									
Date(s) on Project:	8/29/02									
Number of Stockpiles Used:	4									
- Coarse Aggregate Angularity:	97/93									
- Fine Aggregate Angularity:	45									
Percent RAP:	15									
Gradation:	Coarse									
Ninitial, Ndesign, Nmax:	8, 100, 160									
Type Asphalt Binder Used:	PG 67-22									
Design Asphalt Binder Content:	3.9									
Type Modifier Used:	None									
Type Anti-Strip Additive Used:	Baghouse Fines									
Percent Anti-Strip Used:	1.0									
Design Voids in Total Mix:	NA									
Design Voids in Mineral Aggregate:	13.4									
Design Voids Filled with Asphalt:	NA									
Tensile Strength Ratio:	90									
Dust/Asphalt Ratio:	1.18									

Table A	86: Design G	radation for Pro	ject 13
Sieve Size	Sieve Size, mm	Recommended Limits	Percent Passing
11/2 in.	37.5		100
1 in.	25.0		99
³ ⁄4 in.	19.0		89
1/2 in.	12.5		69
3/8 in	9.5		61
No. 4	4.75		48
No. 8	2.36		32
No. 16	1.18		23
No. 30	0.6		15
No. 50	0.3		9
No. 100	0.15		6
No. 200	0.075		4.6

Table A87	/: Results fr	rom SGC Co	ompaction	s									١	ldesign = 100
Project:	13		·		·		·							Date
			App. Sp. Gr.	. (Gsa)	Eff. Sp. Gr. ((Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descrip	tion: 25.0mm F	ine			9/11/2003
AC Sp. Gr. ((Gb) =					2.726		2.735						
		1.028	5											
		1		Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	990	Bulk	тмр	Aggregate	AC by]				Eff. AC
Number	Number	Content	(ame)	(ame)	(gms)	(Cmb)	(Cmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
		1	(gins)	(gins)	(gins)	(Ginb)	(Giiiii)	CC	%	pcf				%
1	1	3.9	4906.6	2879.9	4913.7	2.413	2.542	84.8	9.2	150.5	5.1	15.2	66.6	4.0
1	2	3.9	4925.6	2911.9	4933.1	2.437	2.542	85.6	9.2	152.1	4.1	14.4	71.3	4.0
1	3	3.9	4916.5	2916.0	4924.4	2.448	2.542	86.0	9.3	152.8	3.7	14.0	73.6	4.0
2	1	3.9	4929.1	2925.5	4938.3	2.449	2.581	86.0	9.3	152.8	5.1	14.0	63.3	4.0
2	2	3.9	4936.8	2931.6	4958.4	2.436	2.581	85.6	9.2	152.0	5.6	14.4	61.0	4.0
2	3	3.9	4919.9	2919.5	4930.1	2.447	2.581	86.0	9.3	152.7	5.2	14.0	63.0	4.0
Input By:													Checked By	/:
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter		VMA = Void:	s in Mineral A	ggregate					
TMD = Thec	pretical Maximu	um Density		AC = Aspha	It Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
am = aram				pcf = pound	s per cubic fo	ot	VTM = Void	s in Total Mix						

Table A87: Results from SGC Compactions

Table A88:	Results (of Heiaht	Sample	SGC	Compactions

Table A88	: Results o	of Height Sa	mple SGC Comp	oactions							N	design = 100
Project:	13											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 25.0mm Fine			9/11/2003
AC Sp. Gr. (Gb) =											
		1.028			2.727		2.735		-			
				Masses		SPECI	IC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	3.8	3142.8	1855.6	3151.6	2.425	2.542	9.0	4.6	5.8	0	3.9
1	2	3.8	3140.4	1857.6	3149.0	2.432	2.542	9.0	4.3	5.5	0	3.9
1	3	3.8	3084.2	1803.0	3096.6	2.384	2.542	8.8	6.2	7.1	0	3.9
1	4	3.8	3109.8	1826.3	3117.7	2.408	2.542	8.9	5.3	6.3	0	3.9
1	5	3.8	3039.8	1765.7	3060.0	2.349	2.542	8.7	7.6	8.7	24	3.9
1	6	3.8	3072.4	1798.0	3090.8	2.377	2.542	8.8	6.5	7.5	128	3.9
1	7	3.8	3047.0	1776.8	3075.0	2.347	2.542	8.7	7.7	8.9	66	3.9
1	8	3.8	3058.6	1783.7	3078.5	2.362	2.542	8.7	7.1	8.4	31	3.9
2	1	3.2	3251.4	1930.1	3253.4	2.457	2.581	7.6	4.8	5.7	0	3.3
2	2	3.2	3221.7	1912.1	3224.5	2.455	2.581	7.6	4.9	5.8	0	3.3
2	3	3.2	3128.0	1843.7	3135.0	2.422	2.581	7.5	6.1	7.5	0	3.3
2	4	3.2	3161.6	1881.2	3167.7	2.458	2.581	7.6	4.8	6.2	0	3.3
2	5	3.2	3013.3	1749.0	3044.2	2.327	2.581	7.2	9.9	10.9	61	3.3
2	6	3.2	3014.8	1750.0	3058.3	2.304	2.581	7.2	10.7	11.8	386	3.3
2	7	3.2	2973.3	1713.3	3013.0	2.288	2.581	7.1	11.4	12.5	152	3.3
2	8	3.2	2978.5	1714.2	3018.0	2.284	2.581	7.1	11.5	12.4	170	3.3
Input By:												
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter							
TMD = Theo	retical Maximu	um Density		AC = Aspha	lt Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on			Sample	e 1		Sample 2					Ov		
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	99.0
19	3.76	88.5	88.6	90.1	89.1	0.9	88.6	85.9	88.0	87.5	1.4	88.3	1.1	89.0
12.5	3.12	80.2	77.1	78.3	78.5	1.6	73.0	71.2	73.5	72.6	1.2	75.6	4.2	69.0
9.5	2.75	78.3	75.2	76.5	76.7	1.6	70.0	67.9	70.4	69.4	1.3	73.1	5.1	61.0
4.75	2.02	62.0	59.2	60.0	60.4	1.4	52.6	51.0	53.4	52.3	1.2	56.4	5.7	48.0
2.36	1.47	39.5	37.4	38.3	38.4	1.1	33.6	32.7	33.7	33.3	0.6	35.9	3.6	32.0
1.18	1.08	28.3	26.7	27.3	27.4	0.8	24.3	23.6	24.3	24.1	0.4	25.8	2.4	23.0
0.6	0.8	18.8	17.8	18.2	18.3	0.5	16.2	15.7	16.2	16.0	0.3	17.2	1.6	15.0
0.3	0.58	9.5	9.0	9.3	9.3	0.3	10.7	7.8	8.1	8.9	1.6	9.1	0.3	9.0
0.15	0.43	5.8	5.5	5.8	5.7	0.2	5.4	5.0	5.2	5.2	0.2	5.5	0.4	6.0
0.075	0.31	4.0	3.7	4.0	3.9	0.2	4.0	3.6	3.8	3.8	0.2	3.9	0.1	4.6
			Sam	nple 1				Sar	nple 2			Ove	erall	
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		3.90	3.80	3.70	3.80	0.10	3.20	3.10	3.30	3.20	0.10	3.50	0.42	3.9

Table A89: Gradations and Asphalt Contents

Test	#57 LMS	
Bulk / Apparent Specific Gravity	2.833/2.840	
Absorption, %	0.22	
LA Abrasion, % Loss	28.4	
Flat and Elongated, %		-
3 to 1	3.9	
5 to 1		
Coarse Aggregate Flow, %	45.8	
Crushed Content, %		
One Face	100	100
Two+ Faces	100	100
Data provided by either the agency	or determined	at NCAT lab

Table A90: Coarse Aggregate Properties for Project 13

Table A91: Fine Aggregate Properties for Project 13

Test	#8910 LMS	C. Sand	Pea GVL	RAP							
Bulk / Apparent Specific Gravity	2.632/2.746										
Absorption, %	0.02										
Fine Aggregate Angularity, %	44.3										
Sand Equivalent	81										
Data provided by either the agency or determined at NCAT lab											

Project 14:

Project 14 was evaluated on the night of August 9, 2002 and consisted of the placement of 25.4mm of new hot mix asphalt in the southbound lane of an interstate highway. The mix consisted of a 12.5mm nominal maximum aggregate size coarse-graded granite Stone Matrix Asphalt (SMA) blend designed using the Marshall mix design method, using a blow count of 50 blows. For research purposes, however, this number was converted to an N_{design} of 75 gyrations, resulting in a design asphalt content of 6.7 percent. The asphalt binder that was used was a PG 76-22. 0.3 percent mineral fiber was added to the mix. The weather conditions during paving were approximately 60-65°F with a slight breeze throughout the night. The mix design and gradation information are provided in Tables A92 and A93.

The project was located approximately five miles from the CMI batch plant. Dump trucks fed the mix into a Roadtec 2500B material transfer device, which fed a Blaw-Knox PF-3200 paver. The mat was laid at a temperature of 290°F. Breakdown rolling was conducted by a Dynapac roller making five to six passes in vibratory mode. Intermediate rolling began when the mat was approximately 185°F and was accomplished by another Dynapac roller making four passes in vibratory mode. Finish rolling was conducted by a Cowin ST105 roller, making one pass in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mix are provided in Tables A94-A98.

Table A92: Project 14 Mix Design Summary									
Inform	nation								
JMF I.D. Number:	NA								
Date(s) on Project:	9/9/02								
Number of Stockpiles Used:	4								
- Coarse Aggregate Angularity:	100% 2+ Crushed Faces								
- Fine Aggregate Angularity:	47								
Percent RAP:	None								
Gradation:	9.5mm SMA								
Ninitial, Ndesign, Nmax:	50 Blow Marshall								
Type Asphalt Binder Used:	PG 76-22								
Design Asphalt Binder Content:	6.7								
Type Modifier Used:	None								
Type Anti-Strip Additive Used:	Mineral Fiber								
Percent Anti-Strip Used:	0.3								
Design Voids in Total Mix:	4.0								
Design Voids in Mineral Aggregate:	17.9								
Design Voids Filled with Asphalt:	NA								
Tensile Strength Ratio:	NA								
Dust/Asphalt Ratio:	NA								

Table A	Table A93: Design Gradation for Project 14													
Sieve Size	Sieve Size, mm	Recommended Limits	Percent Passing											
11/2 in.	37.5		100											
1 in.	25.0		100											
³ / ₄ in.	19.0		100											
$\frac{1}{2}$ in.	12.5		100											
3/8 in	9.5		100											
No. 4	4.75		53											
No. 8	2.36		25											
No. 16	1.18		19											
No. 30	0.6		16											
No. 50	0.3		14											
No. 100	0.15		11											
No. 200	0.075		9.1											

Table A94	: Results f	rom SGC Co	mpaction	5									Ndesig	n = 75 Blows
Project:	13													Date
	App. Sp. Gr. (Gsa)					Eff. Sp. Gr. (Gse): Bulk Sp. Gr. (Gsb):				tion: 9.5mm SM	ЛA			9/11/2003
AC Sp. Gr. (Gb) =					2.674		2.682						
		1.028												
				Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	880	Dulk	TMD	Aggregate	AC by					Eff. AC
Number	Number	Content	(ama)		(gmg)	(Cmb)	(Cmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(gins)	(gins)	(gins)	(GIIID)	(Gilill)	сс	%	pcf				%
1	1	6.4	4671.1	2694.2	4680.2	2.352	2.425	82.1	14.6	146.8	3.0	17.9	83.2	6.5
1	2	6.4	4646.8	2680.0	4654.8	2.353	2.425	82.1	14.6	146.8	3.0	17.9	83.4	6.5
1	3	6.4	4710.7	2723.5	4719.2	2.360	2.425	82.4	14.7	147.3	2.7	17.6	84.9	6.5
2	1	6.4	4706.4	2706.4	4719.8	2.338	2.426	81.6	14.6	145.9	3.6	18.4	80.2	6.5
2	2	6.4	4764.0	2738.1	4778.9	2.334	2.426	81.5	14.5	145.7	3.8	18.5	79.6	6.5
2	3	6.4	4675.4	2689.3	4687.7	2.340	2.426	81.6	14.6	146.0	3.6	18.4	80.6	6.5
Input By:							•						Checked By	
SSD = Satur	ated Surface I	Dry		cc = cubic ce	entimeter		VMA = Voids	in Mineral A	ggregate					
TMD = Theo	retical Maxim	um Density		AC = Aspha	lt Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
gm = gram		-		pcf = pounds	s per cubic for	ot	VTM = Voids	in Total Mix						

Table A94: Results from SGC Compactions

Table A95: Results of	of Height Sample	SGC Compactions
-----------------------	------------------	-----------------

Table A95	5: Results o	of Height Sa	mple SGC Com	pactions							Ndesig	n = 75 Blows
Project:	14											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 9.5mm SMA			9/11/2003
AC Sp. Gr. ((Gb) =											
		1.028			2.674		2.682					
				Masses		SPECII	FIC GRAVITIES		VC	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
2	1	6.4	1140.1	623.3	1159.7	2.125	2.426	13.2	12.4	15.5	6017	6.5
2	2	6.4	1127.5	625.3	1143.7	2.175	2.426	13.5	10.3	13.5	1930	6.5
2	3	6.4	1039.7	574.8	1060.1	2.142	2.426	13.3	11.7	14.4	2703	6.5
2	4	6.4	1038.3	579.3	1053.0	2.192	2.426	13.6	9.6	13.5	2689	6.5
2	5	6.4	1025.5	570.3	1042.8	2.170	2.426	13.5	10.5	14.7	2703	6.5
2	6	6.4	976.4	541.2	1003.5	2.112	2.426	13.1	12.9	18.1	5407	6.5
2	7	6.4	931.7	509.3	955.2	2.089	2.426	13.0	13.9	21.2	9141	6.5
2	8	6.4										6.5
Input By:												
SSD = Satur	rated Surface I	Dry		cc = cubic c	entimeter							
TMD = Theo	pretical Maximu	um Density		AC = Aspha	It Cement							
gm = gram				pcf = pound	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on			Sample	e 1		Sample 2			Ον	Overall			
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.00	100.00	100.00	100.00	0.0	100.00	100.00	100.00	100.00	0.0	100.00	0.00	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.00	0.00	100.0
19	3.76	100	100	100	100.0	0.0	100	100	100	100.0	0.0	100.00	0.00	100.0
12.5	3.12	100	100	100	100.0	0.0	100	100	100	100.0	0.0	100.00	0.00	100.0
9.5	2.75	100	100	100	100.0	0.0	100	100	100	100.0	0.0	100.00	0.00	100.0
4.75	2.02	52.6	53	54.2	53.3	0.8	56	55.1	55.4	55.5	0.5	54.38	1.58	53.0
2.36	1.47	25.6	26.3	26.4	26.1	0.4	26.1	26.4	26.3	26.3	0.2	26.18	0.12	25.0
1.18	1.08	20.4	20.9	21.1	20.8	0.4	20.6	21.1	21	20.9	0.3	20.85	0.07	19.0
0.6	0.8	17.1	17.6	17.7	17.5	0.3	17.4	17.9	17.7	17.7	0.3	17.57	0.14	16.0
0.3	0.58	13.9	14.3	14.4	14.2	0.3	14.1	14.6	14.3	14.3	0.3	14.27	0.09	14.0
0.15	0.43	10.7	11	11.1	10.9	0.2	11.1	11.3	11.1	11.2	0.1	11.05	0.16	11.0
0.075	0.31	8.2	8.3	8.4	8.3	0.1	8.7	8.7	8.5	8.6	0.1	8.47	0.24	9.1
		Sample 1				Sample 2					Overall			
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		6.60	6.30	6.20	6.37	0.21	6.40	6.20	6.60	6.40	0.20	6.38	0.02	6.7

Table A96: Gradations and Asphalt Contents
Test	#89's Granite					
Bulk / Apparent Specific Gravity	2.610/2.741					
Absorption, %	1.8					
LA Abrasion, % Loss	13.4					
Flat and Elongated, %						
3 to 1	55					
5 to 1	9					
Coarse Aggregate Flow, %	42.1					
Crushed Content, %						
One Face	100					
Two+ Faces	100					
Data provided by either the agency or determined at NCAT lab						

Table A97: Coarse Aggregate Properties for Project 14

Table 08.	Fina A	aaraaata	Dropartias	for	Droigo	+ 1/
1 able 98.	гше А	ggregale	Properties	101	Projec	ι 14

Test	M-10's					
Bulk / Apparent Specific Gravity	2.661/2.715					
Absorption, %	0.74					
Fine Aggregate Angularity, %	48.5					
Sand Equivalent 65						
Data provided by either the agency or determined at NCAT lab						

Project 15:

Project 15 was evaluated on October 3, 2002 and consisted of the placement of 57.2mm of hot mix asphalt over Portland Cement Concrete the northbound lane of an existing highway. The mix consisted of a 19.0mm nominal maximum aggregate size coarse-graded limestone/gravel blend designed at an N_{design} of 100 gyrations resulting in a design asphalt content of 4.2 percent. The asphalt binder that was used was a PG 76-22. A liquid anti-stripping agent was used at a rate of 0.5 percent. The weather conditions during paving were approximately 90°F with little to no breeze. The mix design and gradation information are provided in Tables A99 and A100.

The project was located approximately 20-25 miles from the Gencor drum plant. Dump trucks fed the mix to the Cedarapids CR451 paver, which laid the mix at a temperature of about 315°F. Breakdown rolling began when the mat cooled to a temperature of about 250°F and was conducted by an Ingersoll Rand DD110 roller making one pass in high amplitude and frequency, then making two static passes. Finish rolling was accomplished with an Ingersoll Rand DD90 paver making two passes in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mixture are provided in Tables A101-A105.

Table A99: Project 15 Mix Design Summary								
Information								
JMF I.D. Number:	NA							
Date(s) on Project:	10/03/2002							
Number of Stockpiles Used:	4							
- Coarse Aggregate Angularity:	99/98							
- Fine Aggregate Angularity:	45							
Percent RAP:	20							
Gradation:	19.0mm Coarse Graded							
Ninitial, Ndesign, Nmax:	8, 100, 160							
Type Asphalt Binder Used:	PG 76-22							
Design Asphalt Binder Content:	4.2							
Type Modifier Used:	NA							
Type Anti-Strip Additive Used:	ADHERE							
Percent Anti-Strip Used:	0.5							
Design Voids in Total Mix:	3.8							
Design Voids in Mineral Aggregate:	13.9							
Design Voids Filled with Asphalt:	NA							
Tensile Strength Ratio:	87							
Dust/Asphalt Ratio:	1.13							

Table A100: Design Gradation for Project 15									
Sieve Size	Sieve Size, mm	Recommended Limits from Job Mix	Percent Passing						
11/2 in.	37.5		100						
1 in.	25.0		100						
³ ⁄4 in.	19.0		99						
1/2 in.	12.5		81						
3/8 in	9.5		72						
No. 4	4.75		53						
No. 8	2.36		37						
No. 16	1.18		25						
No. 30	0.6		15						
No. 50	0.3		8						
No. 100	0.15		6						
No. 200	0.075		4.7						

Table A10	1: Results	from SGC 0	Compactio	ns									N	ldesign = 100
Project:	15													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. ((Gse):	Bulk Sp. Gr.	(Gsb):	Mix Descrip	tion: 19.0mm C	Coarse			9/11/2003
AC Sp. Gr. (Gb) =					2.714		2.717						
		1.028	6											
				Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		-
Sample	Specimen	Asphalt	In Air	In Water	880	Bulk	TMD	Aggregate	AC by] [Eff. AC
Number	Number	Content	(ama)	(ama)	(ama)	(Cmb)	(Cmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(gms)	(gins)	(gnis)	(GIID)	(Ghini)	сс	%	pcf				%
1	1	4.3	4934.2	2918.7	4940.1	2.441	2.529	86.0	10.2	152.3	3.5	14.0	75.2	4.3
1	2	4.3	4928.5	2919.2	4933.0	2.447	2.529	86.2	10.2	152.7	3.2	13.8	76.6	4.3
1	3	4.3	4933.9	2917.9	4937.8	2.443	2.529	86.0	10.2	152.4	3.4	14.0	75.5	4.3
2	1	4.0	4919.0	2921.6	4923.3	2.457	2.550	86.8	9.6	153.3	3.6	13.2	72.4	4.0
2	2	4.0	4922.3	2920.0	4925.9	2.454	2.550	86.7	9.5	153.1	3.8	13.3	71.7	4.0
2	3	4.0	4915.8	2921.3	4924.8	2.454	2.550	86.7	9.5	153.1	3.8	13.3	71.6	4.0
Input By:											Checked By	/:		
SSD = Saturated Surface Dry cc = cubic centim			entimeter	VMA = Voids in Mineral Aggregate										
TMD = Theoretical Maximum Density AC = Asphalt Cemer			lt Cement		VFA = Voids Filled With Asphalt Cement									
am = gram pcf = pounds per cubic foot				ot	VTM = Voids in Total Mix									

Table A101: Results from SGC Compactions

|--|

Table A102: Results of Height Sample SGC Compactions Ndesign =										design = 100		
Project:	15		-	-								Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descripti	on: 19.0mm Coa	rse		9/11/2003
AC Sp. Gr. (Gb) =											
		1.028			2.714		2.717				-	
				Masses		SPECIF	IC GRAVITIES		VC	DIDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	4.3	2453.3	1439.4	2455.5	2.414	2.529	10.1	4.5	5.7	NF	4.3
1	2	4.3	2444.7	1434.6	2446.8	2.415	2.529	10.1	4.5	5.7	NF	4.3
1	3	4.3	2340.0	1373.4	2344.5	2.410	2.529	10.1	4.7	6.1	56	4.3
1	4	4.3	2343.8	1364.9	2348.9	2.382	2.529	10.0	5.8	6.8	133	4.3
1	5	4.3	2306.4	1342.0	2316.5	2.367	2.529	9.9	6.4	8.5	266	4.3
1	6	4.3	2304.4	1339.6	2317.5	2.356	2.529	9.9	6.8	7.7	70	4.3
1	7	4.3	2272.6	1316.0	2288.1	2.338	2.529	9.8	7.6	8.1	153	4.3
1	8	4.3	2261.5	1308.2	2277.8	2.332	2.529	9.8	7.8	9.4	195	4.3
2	1	4.0	2332.7	1364.7	2336.6	2.400	2.550	9.3	5.9	7.3	29	4.0
2	2	4.0	2340.3	1371.8	2345.4	2.404	2.550	9.4	5.7	7.0	20	4.0
2	3	4.0	2230.7	1298.5	2251.9	2.340	2.550	9.1	8.2	10.8	498	4.0
2	4	4.0	2247.9	1305.1	2267.3	2.336	2.550	9.1	8.4	10.5	375	4.0
2	5	4.0	2196.1	1281.6	2235.8	2.302	2.550	9.0	9.7	11.9	1122	4.0
2	6	4.0	2189.9	1276.1	2229.6	2.297	2.550	8.9	9.9	12.1	897	4.0
2	7	4.0	2172.3	1265.0	2219.5	2.276	2.550	8.9	10.8	13.3	1494	4.0
2	8	4.0	2160.4	1260.8	2199.6	2.301	2.550	9.0	9.8	13.8	1504	4.0
Input By:												
SSD = Saturated Surface Dry cc = cubic centin					entimeter							
TMD = Theo	retical Maximu	um Density		AC = Aspha	It Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradation Sample 1				1		Sample 2					Ον			
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.00	100.00	100.00	100.00	0.0	100.00	100.00	100.00	100.00	0.0	100.00	0.00	100.00
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.00	0.00	100.0
19	3.76	100	100	100	100.0	0.0	100	100	100	100.0	0.0	100.00	0.00	99
12.5	3.12	88.3	84.6	86.6	86.5	1.9	80	79.4	76.9	78.8	1.6	82.63	5.47	81
9.5	2.75	79.2	72.7	74.6	75.5	3.3	65.6	66	64.4	65.3	0.8	70.42	7.19	72
4.75	2.02	55.8	49	51.5	52.1	3.4	45.3	45.1	43.7	44.7	0.9	48.40	5.23	53
2.36	1.47	35.5	32	33.4	33.6	1.8	30.4	30	29	29.8	0.7	31.72	2.71	37
1.18	1.08	23.3	22.1	22.6	22.7	0.6	20.8	20.6	20.1	20.5	0.4	21.58	1.53	25
0.6	0.8	14.8	14.2	14.5	14.5	0.3	13.6	13.3	13.1	13.3	0.3	13.92	0.82	15
0.3	0.58	9.2	8.9	9.1	9.1	0.2	8.4	8.2	8.2	8.3	0.1	8.67	0.57	8
0.15	0.43	6.5	6.3	6.6	6.5	0.2	6.1	5.8	5.8	5.9	0.2	6.18	0.40	6
0.075	0.31	4.8	4.5	4.7	4.7	0.2	4.4	4.1	4.2	4.2	0.2	4.45	0.31	4.7
Sample 1					San	nple 2			Ον	erall				
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		4.50	4.10	4.30	4.30	0.20	4.10	3.90	3.90	3.97	0.12	4.13	0.24	4.2

Table A103: Asphalt Content and Gradation

	5					
Test	#67 LMS	Shot GVL				
Bulk / Apparent Specific Gravity	2.714/2.758	2.573/2.651				
Absorption, %	0.01	0.01				
LA Abrasion, % Loss	41.5	33.3				
Flat and Elongated, %						
3 to 1	37.5	22.3				
5 to 1	8.4	4.7				
Coarse Aggregate Flow, %	46.7	42.5				
Crushed Content, %						
One Face	100	24.1				
Two+ Faces	100	64.8				
Data provided by either the agency or determined at NCAT lab						

Table 104: Coarse Aggregate Properties for Project 15

Table 105: Fine Aggregate Properties for Project 15

Test	#8910 LMS	C. Sand	RAP				
Bulk / Apparent Specific Gravity	2.632/2.746	2.611/2.648	2.619/2.628				
Absorption, %	0.02	0.01	0.1				
Fine Aggregate Angularity, %	44.3	47	44.6				
Sand Equivalent 81 83 87							
Data provided by either the agency or determined at NCAT lab							

Project 16:

Project 16 was evaluated on November 13, 2002 and consisted of the placement of 38.1mm of new hot mix asphalt in the construction of a new state highway. The mix consisted of a 12.5mm nominal maximum aggregate size coarse-graded gravel/RAP blend designed at an N_{design} of 86 gyrations resulting in a design asphalt content of 5.8 percent. The asphalt binder that was used was a PG 67-22 (unmodified). The weather conditions during paving were approximately 65°F and clear. The mix design and gradation information are provided in Tables A106 and A107.

The project was located approximately 35 miles from the Astec Double Barrel drum plant. Windrow paving construction was accomplished with end dump trucks in conjunction with a windrow elevator configured with a Cedarapids CR461R paver. Breakdown rolling was conducted by two Caterpillar CB634C rollers running in tandem, each making four vibratory passes and one static pass. Intermediate rolling was performed by a PS-150B pneumatic roller, while finish rolling was accomplished with a Dynapac CC42 operating in static mode.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mixture are provided in Tables A108-A112.

Table A106: Project 16 Mix Design Summary								
Information								
JMF I.D. Number:	NA							
Date(s) on Project:	11/13/2002							
Number of Stockpiles Used:	4							
- Coarse Aggregate Angularity:	NA							
- Fine Aggregate Angularity:	44.9							
Percent RAP:	15							
Gradation:	12.5mm Coarse Graded							
Ninitial, Ndesign, Nmax:	7, 86, 134							
Type Asphalt Binder Used:	PG 67-22							
Design Asphalt Binder Content:	5.8							
Type Modifier Used:	None							
Type Anti-Strip Additive Used:	None							
Percent Anti-Strip Used:	0.0							
Design Voids in Total Mix:	4.0							
Design Voids in Mineral Aggregate:	15.1							
Design Voids Filled with Asphalt:	72.5							
Tensile Strength Ratio:	93							
Dust/Asphalt Ratio:	1.10							

Table A	107: Design G	radation for Pro	ject 16
Sieve Size	Sieve Size, mm	Recommended Limits from Job Mix	Percent Passing
11/2 in.	37.5		100
1 in.	25.0		100
³ / ₄ in.	19.0		100
¹ / ₂ in.	12.5		100
3/8 in	9.5		91
No. 4	4.75		55
No. 8	2.36		36
No. 16	1.18		26
No. 30	0.6		20
No. 50	0.3		12
No. 100	0.15		7
No. 200	0.075		5.4

Table 108: Results fron	SGC C	ompactions
-------------------------	-------	------------

Table 108	Ible 108: Results from SGC Compactions Ndesi													
Project:	16	·												Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (Eff. Sp. Gr. (Gse):		(Gsb):	Mix Description: 12.5mm Coarse					9/11/2003
AC Sp. Gr. (0	3b) =	I			2.526			2.494						
		1.028												
			Masses SPE		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes						
Sample	Specimen	Asphalt	In Air	In Water	990	Bulk	тмр	Aggregate	AC by] [1	Eff. AC
Number	Number	Content		(amo)	(gmg)	(Cmb)	(Cmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
	<u> </u>	1'	(gnis)	(gnis)	(gnis)	(GIID)	(Ghin)	СС	%	pcf			1	%
1	1	5.8	4522.6	2520.4	4537.0	2.243	2.327	84.7	12.7	139.9	3.6	15.3	76.3	5.3
1	2	5.8	4527.1	2526.8	4536.5	2.253	2.327	85.1	12.7	140.6	3.2	14.9	78.6	5.3
1	3	5.8	4548.3	2540.5	4558.8	2.254	2.327	85.1	12.7	140.6	3.2	14.9	78.8	5.3
	· · · · · · · · · · · · · · · · · · ·		,		,		·							
2	1	5.8	4537.6	2550.8	4544.0	2.277	2.332	86.0	12.8	142.1	2.4	14.0	83.0	5.3
2	2	5.8	4533.0	2546.1	4539.7	2.274	2.332	85.9	12.8	141.9	2.5	14.1	82.3	5.3
2	3	5.8	4521.2	2537.6	4532.0	2.267	2.332	85.6	12.8	141.5	2.8	14.4	80.6	5.3
Input By:						·							Checked By	/:
SSD = Satur	ated Surface !	Dry		cc = cubic c	entimeter		VMA = Voids	in Mineral Ar	ggregate					
TMD = Theoretical Maximum Density AC				AC = Aspha	alt Cement VFA = Voids Filled With Asphalt Cement									
am = aram				pcf = pound	s per cubic for	ot	VTM = Voids	in Total Mix						

Table A103. Results of Heldill Sample SOC Combactions	Table A109:	Results	of Height	Sample	SGC	Compactions
---	-------------	---------	-----------	--------	-----	-------------

Table A10	9: Results	of Height S	ample SGC Com	pactions								Ndesign = 86
Project:	16		-	-								Date
			App. Sp. Gr. (Gsa)	a) Eff. Sp. Gr. (Gse):			Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 12.5mm Coar	se		9/11/2003
AC Sp. Gr. (Gb) =											
		1.028			2.527		2.494					
			Masses			SPECIF	IC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	5.6	1563.3	865.0	1565.1	2.233	2.327	12.2	4.0	5.7	61	5.1
1	2	5.6	1555.4	859.1	1558.5	2.224	2.327	12.1	4.4	6.3	99	5.1
1	3	5.6	1455.0	795.1	1460.9	2.185	2.327	11.9	6.1	8.3	127	5.1
1	4	5.6	1407.0	770.8	1411.5	2.196	2.327	12.0	5.6	8.1	211	5.1
1	5	5.6	1352.5	735.8	1357.3	2.176	2.327	11.9	6.5	9.2	288	5.1
1	6	5.6	1358.1	738.8	1365.4	2.167	2.327	11.8	6.9	8.9	241	5.1
1	7	5.6	1333.0	718.0	1334.4	2.163	2.327	11.8	7.1	10.5	483	5.1
1	8	5.6	1338.3	714.5	1355.1	2.089	2.327	11.4	10.2	13.0	1543	5.1
2	1	5.5	1374.7	746.4	1382.5	2.161	2.332	11.6	7.3	9.7	294	5.0
2	2	5.5	1381.2	758.4	1385.3	2.203	2.332	11.8	5.5	7.5	103	5.0
2	3	5.5	1282.0	685.1	1299.9	2.085	2.332	11.2	10.6	13.8	1010	5.0
2	4	5.5	1265.0	671.7	1283.2	2.069	2.332	11.1	11.3	14.8	3021	5.0
2	5	5.5	1230.8	652.9	1259.1	2.030	2.332	10.9	12.9	16.5	3343	5.0
2	6	5.5	1238.0	661.6	1267.4	2.044	2.332	10.9	12.4	16.0	2240	5.0
2	7	5.5	1196.0	624.7	1221.4	2.004	2.332	10.7	14.0	18.0	3330	5.0
2	8	5.5	1207.3	643.0	1234.7	2.040	2.332	10.9	12.5	17.5	6642	5.0
Input By:												
SSD = Satur	ated Surface [Dry		cc = cubic c	entimeter							
TMD = Theo	retical Maximu	um Density		AC = Aspha	lt Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on			Sample	e 1		Sample 2				Ov			
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
12.5	3.12	99.3	99.1	98.6	99.0	0.4	98.7	98.6	99.0	98.8	0.2	98.9	0.2	100.0
9.5	2.75	89.4	89.9	89.1	89.5	0.4	90.3	90.0	90.0	90.1	0.2	89.8	0.4	91.0
4.75	2.02	55.9	56.1	53.6	55.2	1.4	57.9	56.3	56.9	57.0	0.8	56.1	1.3	55.0
2.36	1.47	36.3	36.3	35.2	35.9	0.6	37.9	37.0	37.7	37.5	0.5	36.7	1.1	36.0
1.18	1.08	26.3	26.1	25.6	26.0	0.4	27.5	27.0	27.5	27.3	0.3	26.7	0.9	26.0
0.6	0.8	20.1	19.8	19.6	19.8	0.3	21.2	20.9	21.0	21.0	0.2	20.4	0.8	20.0
0.3	0.58	12.6	12.2	12.1	12.3	0.3	13.8	13.6	13.3	13.6	0.3	12.9	0.9	12.0
0.15	0.43	7.4	7.0	7.0	7.1	0.2	8.6	8.7	7.9	8.4	0.4	7.8	0.9	7.0
0.075	0.31	5.0	4.6	4.7	4.8	0.2	6.3	6.6	5.4	6.1	0.6	5.4	0.9	5.4
			Sam	nple 1			Sample 2					Ον	erall	
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		5.40	5.90	5.40	5.57	0.29	5.60	5.30	5.60	5.50	0.17	5.53	0.05	5.8

Table A110: Gradations and Asphalt Contents

	1	5
Test	1/2" Cr. GVL	#78 LMS
Bulk / Apparent Specific Gravity	2.422/2.586	2.741/2.769
Absorption, %	2.62	0.37
LA Abrasion, % Loss	15.3	
Flat and Elongated, %		
3 to 1	52	
5 to 1	11	
Coarse Aggregate Flow, %	44.1	
Crushed Content, %		
One Face	36.2	
Two+ Faces	61.9	
Data provided by either the agency	y or determined	l at NCAT lab

Table A111: Coarse Aggregate Properties for Project 16

Table A112: Fine Aggregate Properties for Project 16

Test	C. Sand	#8910 LMS	RAP								
Bulk / Apparent Specific Gravity	2.635/2.665	2.668/2.719	2.486/2.583								
Absorption, %	0.43	0.7	1.51								
Fine Aggregate Angularity, %	42.4										
Sand Equivalent	95										
Data provided by either the agency	y or determined	d at NCAT lab									

Project 17:

Project 17 was evaluated on June 9, 2003, and consisted of the placement of 37.5mm of new hot mix asphalt on the southbound lane of a county road. The mix consisted of a 12.5mm nominal maximum aggregate size fine-graded granite/RAP blend designed at an N_{design} of 75 gyrations resulting in a design asphalt content of 4.8 percent. The asphalt binder that was used was a PG 64-22 (unmodified). A liquid anti-stripping agent was used at a rate of 0.75 percent. The weather conditions during paving were approximately 90°F, humid, and cloudy. The mix design and gradation information are provided in Tables A113 and A114.

The project was located approximately 15 miles from the Astec Double Barrel drum plant. Dump trucks fed the mix into the Blaw Knox PF-3200 paver at a temperature of approximately 255°F. Breakdown rolling was conducted by an Ingersoll Rand DD 110 roller making four passes in static mode, starting at a pavement temperature of 230°F. Finish rolling was conducted by an Ingersoll Rand DD 90, but during paving evaluation, this roller was not being used due to malfunction.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mixture are provided in Tables A115-A119.

Table A113: Project 17 Mix Design Summary									
Infor	nation								
JMF I.D. Number:	NA								
Date(s) on Project:	6/09/03								
Number of Stockpiles Used:	6								
- Coarse Aggregate Angularity:	NA								
- Fine Aggregate Angularity:	45								
Percent RAP:	18								
Gradation:	12.5mm Fine Graded								
Ninitial, Ndesign, Nmax:	NA/ 75/ NA								
Type Asphalt Binder Used:	PG 64-22								
Design Asphalt Binder Content:	4.8								
Type Modifier Used:	None								
Type Anti-Strip Additive Used:	Liquid								
Percent Anti-Strip Used:	0.75								
Design Voids in Total Mix:	4.0								
Design Voids in Mineral Aggregate:	14.9								
Design Voids Filled with Asphalt:	NA								
Tensile Strength Ratio:	NA								
Dust/Asphalt Ratio:	NA								

Table A	114: Design G	radation for Pro	ject 17
Sieve Size	Sieve Size, mm	Recommended Limits from Job Mix	Percent Passing
11/2 in.	37.5		100
1 in.	25.0		100
³ / ₄ in.	19.0	100	100
1/2 in.	12.5	90-100	94
3/8 in	9.5	-90	85
No. 4	4.75		59
No. 8	2.36	28-58	44
No. 16	1.18		40
No. 30	0.6		33
No. 50	0.3		17
No. 100	0.15		6
No. 200	0.075	2-10	4.5

Table A11	5: Results	from SGC C	Compactio	ns										Ndesign = 75
Project:	17													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. (Gse):		Bulk Sp. Gr.	Bulk Sp. Gr. (Gsb):		Mix Description: 12.5mm Fine				
AC Sp. Gr. (Gb) =					2.744		2.733						
		1.028	i											
				Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	SSD	Bulk	тмр	Aggregate	AC by					Eff. AC
Number	Number	Content	(ams)	(gms)	(gms)	(Gmb)	(Gmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(giiis)	(giiis)	(giiis)	(dilib)	(Gillin)	CC	%	pcf				%
1	1	4.8	4958.1	2930.8	4960.6	2.443	2.544	85.1	11.4	152.4	4.0	14.9	73.3	4.7
1	2	4.8	4942.9	2928.9	4945.6	2.451	2.544	85.4	11.4	152.9	3.7	14.6	75.0	4.7
1	3	4.8	4921.2	2913.5	4923.5	2.448	2.544	85.3	11.4	152.8	3.8	14.7	74.5	4.7
0	1	4.0	4007.0	0700.4	4000.0	0.400	0.505	05.0	44.5	452.0	0.7	11.1	00.7	4.7
2	1	4.8	4687.3	2788.1	4688.9	2.466	2.535	85.9	11.5	153.9	2.7	14.1	80.7	4.7
2	2	4.8	4707.4	2794.3	4709.7	2.458	2.535	85.6	11.5	153.4	3.1	14.4	78.8	4.7
2	3	4.8	4707.0	2794.3	4709.5	2.458	2.535	85.6	11.5	153.4	3.0	14.4	78.8	4.7
Input By:													Checked By	<i>[</i> .
SSD = Satur	ated Surface [Dry		cc = cubic c	entimeter		VMA = Voids	in Mineral A	ggregate					
TMD = Theo	pretical Maximu	um Density		AC = Aspha	lt Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
am = aram				pcf = pound	s per cubic for	ot	VTM = Voids	in Total Mix						

Table A115: Results from SGC Compactions

Table A11	6: Results	of Height S	ample SGC Com	pactions							1	Ndesign = 75
Project:	17		-	-								Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descripti	on: 12.5mm Fine			9/11/2003
AC Sp. Gr. (Gb) =											
		1.028			2.744	.744 2.733						
				Masses		SPECIF	IC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	4.8	1600.1	945.8	1601.4	2.441	2.544	11.4	4.1	5.0	0	4.7
1	2	4.8	1581.4	933.5	1582.1	2.438	2.544	11.4	4.2	4.8	0	4.7
1	3	4.8	1512.2	873.5	1515.2	2.357	2.544	11.0	7.4	10.2	12	4.7
1	4	4.8	1484.7	850.6	1491.5	2.317	2.544	10.8	8.9	8.6	4	4.7
1	5	4.8	1492.1	855.9	1497.0	2.327	2.544	10.9	8.5	9.7	14	4.7
1	6	4.8	1486.0	855.4	1492.0	2.334	2.544	10.9	8.2	9.5	7	4.7
1	7	4.8	1427.6	806.3	1438.3	2.259	2.544	10.5	11.2	13.1	25	4.7
1	8	4.8	1421.3	803.7	1433.5	2.257	2.544	10.5	11.3	12.8	14	4.7
2	1	4.8	1632.1	956.9	1633.2	2.413	2.535	11.3	4.8	4.7	0	4.7
2	2	4.8	1631.2	959.8	1632.4	2.425	2.535	11.3	4.3	5.2	0	4.7
2	3	4.8	1572.0	922.0	1572.9	2.415	2.535	11.3	4.7	5.8	0	4.7
2	4	4.8	1576.1	925.4	1577.8	2.416	2.535	11.3	4.7	6.7	0	4.7
2	5	4.8	1635.1	930.1	1637.1	2.313	2.535	10.8	8.8	7.2	2	4.7
2	6	4.8	1533.4	892.8	1537.4	2.379	2.535	11.1	6.2	6.6	0	4.7
2	7	4.8	1487.6	850.9	1492.9	2.317	2.535	10.8	8.6	10.1	17	4.7
2	8	4.8	1472.8	844.7	1479.8	2.319	2.535	10.8	8.5	9.6	6	4.7
Input By:												
SSD = Satur	ated Surface I	Dry		cc = cubic ce	entimeter							
TMD = Theo	TMD = Theoretical Maximum Density AC = Asphalt Cement											
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on			Sample	e 1				Sample	2		Ove	erall	
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
19	3.76	100.0	98.9	100.0	99.6	0.6	99.7	99.4	97.6	98.9	1.1	99.3	0.5	100.0
12.5	3.12	97.8	98.6	97.4	97.9	0.6	97.4	97.0	95.2	96.5	1.2	97.2	1.0	94.0
9.5	2.75	90.9	90.4	87.6	89.6	1.8	87.5	89.1	86.9	87.8	1.1	88.7	1.3	85.0
4.75	2.02	58.6	56.9	54.1	56.5	2.3	54.4	56.6	56.7	55.9	1.3	56.2	0.4	59.0
2.36	1.47	48.5	47.2	45.3	47.0	1.6	43.9	45.8	45.4	45.0	1.0	46.0	1.4	44.0
1.18	1.08	41.9	41.0	39.5	40.8	1.2	37.7	39.2	38.9	38.6	0.8	39.7	1.6	40.0
0.6	0.8	32.7	32.2	31.1	32.0	0.8	29.1	30.2	29.9	29.7	0.6	30.9	1.6	33.0
0.3	0.58	18.9	18.8	18.3	18.7	0.3	17.5	18.0	17.9	17.8	0.3	18.2	0.6	17.0
0.15	0.43	7.3	7.3	7.3	7.3	0.0	7.4	7.6	7.5	7.5	0.1	7.4	0.1	6.0
0.075	0.31	3.6	3.6	3.7	3.6	0.1	3.8	3.8	3.6	3.7	0.1	3.7	0.1	4.5
			Sam	nple 1				Sar	nple 2			Ove	erall	
Asphalt Content		Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		4.61	4.43	4.22	4.42	0.20	4.42	4.43	4.47	4.44	0.03	4.43	0.01	4.8

Table A117: Gradations and Asphalt Contents

		2	
Test	#67 Granite	#78 Granite	#89 Granite
Bulk / Apparent Specific Gravity	2.809/NA	2.808/NA	2.799/NA
Absorption, %			
LA Abrasion, % Loss	5.1	12	7.2
Flat and Elongated, %			
3 to 1	59.5	23.1	91.8
5 to 1	37.2		13.3
Coarse Aggregate Flow, %	46.3	50.4	46.1
Crushed Content, %			
One Face	9.7	13.9	9.2
Two+ Faces	90.3	86.2	90.9
Data provided by either the agen	cy or determin	ed at NCAT la	lb

Table A118: Coarse Aggregate Properties for Project 17

Table A119: Fine Aggregate Properties for Project 17

	<u> </u>			
Test	W-10's	Sand	RAP	
Bulk / Apparent Specific Gravity	2.770/NA	2.626/NA	2.626/NA	
Absorption, %				
Fine Aggregate Angularity, %	47.1	44.5	41.2	
Sand Equivalent	85	96	93	
Data provided by either the agen	cy or determin	ed at NCAT la	b	

Project 18:

Project 18 was evaluated on June 19, 2003, and consisted of the placement of 38.1mm of new hot mix asphalt on the eastbound lane of a state highway. The mix consisted of a 12.5mm nominal maximum aggregate size coarse-graded granite/RAP blend designed at an N_{design} of 75 gyrations resulting in a design asphalt content of 5.1 percent. The asphalt binder that was used was a PG 67-22 (unmodified). Lime was added to the mix at a rate of one percent. The weather conditions during paving were approximately 85°F, humid, and mostly cloudy. The mix design and gradation information are provided in Tables A120 and A121.

The project was located approximately 45 minutes from the drum plant. Dump trucks fed the mix into a material transfer device, which in turn fed the mix into the paver. Breakdown rolling was conducted by an Ingersoll Rand DD 130 roller making two passes in vibratory mode in medium amplitude and frequency, then making four passes in static mode. Intermediate rolling was accomplished with an Ingersoll Rand PT-125 pneumatic tire roller making seven total passes across the mat. Finish rolling was conducted by an Ingersoll Rand DD 90 making seven total passes across the mat.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mixture are provided in Tables A122-126.

Table A120: Project 18 Mix Design Summary8										
Infor	mation									
JMF I.D. Number:	NA									
Date(s) on Project:	6/19/03									
Number of Stockpiles Used:	5									
- Coarse Aggregate Angularity:	NA									
- Fine Aggregate Angularity:	NA									
Percent RAP:	15									
Gradation:	12.5mm Coarse Graded									
Ninitial, Ndesign, Nmax:	NA/ 75/ NA									
Type Asphalt Binder Used:	PG 67-22									
Design Asphalt Binder Content:	5.1									
Type Modifier Used:	NA									
Type Anti-Strip Additive Used:	NA									
Percent Anti-Strip Used:	NA									
Design Voids in Total Mix:	4.0									
Design Voids in Mineral Aggregate:	NA									
Design Voids Filled with Asphalt:	NA									
Tensile Strength Ratio:	NA									
Dust/Asphalt Ratio:	NA									

Table A	121: Design G	radation for Pro	ject 18
Sieve Size	Sieve Size, mm	Recommended Limits from Job Mix	Percent Passing
11/2 in.	37.5		100
1 in.	25.0		100
³ ⁄4 in.	19.0		100
¹⁄₂ in.	12.5		98
3/8 in	9.5		85
No. 4	4.75		55
No. 8	2.36		37
No. 16	1.18		
No. 30	0.6		
No. 50	0.3		14
No. 100	0.15		
No. 200	0.075		6.5

Table A12	2: Results	from SGC C	Compaction	ns										Ndesign = 75
Project:	18													Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):		Mix Description: 12.5mm Coarse					9/11/2003
AC Sp. Gr. (Gb) =		2.759			2.729		2.680						
		1.028												
				Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	990	Bulk		Aggregate	AC by					Eff. AC
Number	Number	Content	(ame)	(ame)	(gms)	(Cmb)	(Gmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(giiis)	(giiis)	(giiis)	(GIIID)	(Giiiii)	СС	%	pcf				%
1	1	5.1	4927.6	2909.1	4933.1	2.435	2.538	86.2	12.1	151.9	4.1	13.8	70.5	4.4
1	2	5.1	4930.6	2914.3	4935.7	2.439	2.538	86.4	12.1	152.2	3.9	13.6	71.4	4.4
1	3	5.1	4929.1	2919.3	4932.5	2.448	2.538	86.7	12.1	152.8	3.5	13.3	73.5	4.4
2	1	5.1	4922.2	2924.1	4923.6	2.462	2.518	87.2	12.2	153.6	2.2	12.8	82.6	4.4
2	2	5.1	4942.0	2937.4	4942.8	2.464	2.518	87.3	12.2	153.8	2.1	12.7	83.3	4.4
2	3	5.1	4929.6	2925.2	4933.1	2.455	2.528	86.9	12.2	153.2	2.9	13.1	77.9	4.4
Input By:													Checked By	r:
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter		VMA = Voids	in Mineral A	ggregate					
TMD = Theo	retical Maximu	um Density		AC = Aspha	lt Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
am = aram				pcf = pound	s per cubic for	ot	VTM = Voids	in Total Mix						

Table A122: Results from SGC Compactions

Table A123: Result	s of Height Sample	SGC Compactions
--------------------	--------------------	-----------------

Table A12	3: Results	of Height Sa	ample SGC Com	npactions							1	Ndesign = 75
Project:	18		-	-								Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descripti	on: 12.5mm Coa	rse		9/11/2003
AC Sp. Gr. (Gb) =											
		1.028	2.759		2.729		2.680				-	
				Masses		SPECIF	IC GRAVITIES		VC	DIDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	VTM, %		Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	5.1	1637.6	956.7	1640.8	2.394	2.538	11.9	5.7	7.3	2018	4.4
1	2	5.1	1633.1	949.7	1636.4	2.378	2.538	11.8	6.3	7.8	474	4.4
1	3	5.1	1540.3	896.6	1544.6	2.377	2.538	11.8	6.3	7.8	1215	4.4
1	4	5.1	1527.7	887.2	1532.8	2.366	2.538	11.7	6.8	9.9	1132	4.4
1	5	5.1	1493.2	855.5	1503.8	2.303	2.538	11.4	9.2	11.3	7672	4.4
1	6	5.1	1483.6	856.2	1495.4	2.321	2.538	11.5	8.5	10.6	6819	4.4
1	7	5.1	1439.1	821.3	1455.2	2.270	2.538	11.3	10.6	13.4	7978	4.4
1	8	5.1	1443.3	824.3	1458.2	2.277	2.538	11.3	10.3	13.0	10229	4.4
2	1	5.1	1631.7	939.2	1639.6	2.330	2.518	11.6	7.5	9.6	3580	4.4
2	2	5.1	1633.2	940.1	1639.4	2.335	2.518	11.6	7.2	9.0	836	4.4
2	3	5.1	1528.0	870.7	1542.6	2.274	2.518	11.3	9.7	11.9	3799	4.4
2	4	5.1	1527.9	873.1	1537.7	2.299	2.518	11.4	8.7	10.7	4938	4.4
2	5	5.1	1489.9	849.9	1512.3	2.249	2.518	11.2	10.7	13.5	13167	4.4
2	6	5.1	1489.2	853.8	1508.7	2.274	2.518	11.3	9.7	12.4	7182	4.4
2	7	5.1	1434.6	821.4	1451.4	2.277	2.518	11.3	9.6	12.9	8343	4.4
2	8	5.1	1399.6	800.4	1425.4	2.239	2.518	11.1	11.1	14.4	25029	4.4
Input By:												
SSD = Satur	ated Surface [Dry		cc = cubic c	entimeter							
TMD = Theo	retical Maximu	um Density		AC = Aspha	It Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on			Sample	e 1				Sample	2		Ov	erall	
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
12.5	3.12	98.9	98.4	98.7	98.7	0.3	98.4	97.3	98.6	98.1	0.7	98.4	0.4	98.0
9.5	2.75	86.5	84.4	85.2	85.4	1.1	85.3	83.7	87.4	85.5	1.9	85.4	0.1	85.0
4.75	2.02	56.9	54.1	54.8	55.3	1.5	53.6	53.9	55.8	54.4	1.2	54.9	0.6	55.0
2.36	1.47	37.2	35.7	36.3	36.4	0.8	34.2	34.7	35.2	34.7	0.5	35.6	1.2	37.0
1.18	1.08	25.4	24.6	24.8	24.9	0.4	23.2	23.3	23.7	23.4	0.3	24.2	1.1	
0.6	0.8	18.3	17.7	17.9	18.0	0.3	16.7	16.8	17.0	16.8	0.2	17.4	0.8	
0.3	0.58	13.2	12.8	12.9	13.0	0.2	12.2	12.3	12.5	12.3	0.2	12.7	0.4	14.0
0.15	0.43	9.1	8.8	8.8	8.9	0.2	8.6	8.7	8.8	8.7	0.1	8.8	0.1	
0.075	0.31	6.1	5.9	5.8	5.9	0.2	5.9	6.0	6.1	6.0	0.1	6.0	0.0	6.5
			Sam	nple 1				Sar	nple 2			Ove	erall	
Asphalt Content		Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		4.69	4.57	4.46	4.57	0.12	4.87	4.88	4.98	4.91	0.06	4.74	0.24	5.1

Table A124: Gradations and Asphalt Contents

Test	#7's	#89's
Bulk / Apparent Specific Gravity	2.710/2.738	2.703/2.737
Absorption, %	0.4	0.5
LA Abrasion, % Loss	9.8	10.3
Flat and Elongated, %		
3 to 1	53.5	83.7
5 to 1	16.6	23.8
Coarse Aggregate Flow, %	46.7	49.5
Crushed Content, %		
One Face	8.3	100
Two+ Faces	91.8	100
Data provided by either the agenc	y or determine	d at NCAT lab

Table A125: Coarse Aggregate Properties for Project 18

Table A126: Fine Aggregate Properties for Project 18

Test	W-10's	M-10's	RAP
Bulk / Apparent Specific Gravity	2.728/2.757	2.624/2.744	2.501/2.666
Absorption, %	0.38	1.67	2.48
Fine Aggregate Angularity, %	40	42.1	42.7
Sand Equivalent	100	94	90
Data provided by either the agenc	y or determine	d at NCAT lab	

Project 19:

Project 19 was evaluated on June 23, 2003, and consisted of the placement of 31.8mm of new hot mix asphalt on the westbound lane of a state highway. The mix consisted of a 9.5mm nominal maximum aggregate size fine-graded granite/RAP blend designed at an N_{design} of 75 gyrations resulting in a design asphalt content of 5.5 percent. The asphalt binder that was used was a PG 67-22 (unmodified). Lime was added to the mix at a rate of one percent. The weather conditions during paving were approximately 90°F and clear. The mix design and gradation information are provided in Tables A127 and A128.

The project was located approximately one hour from the drum plant. Dump trucks fed the mix into the paver. Breakdown rolling was conducted by an Ingersoll Rand DD 90 roller making three passes in vibratory mode in medium amplitude and frequency, then making two passes in static mode. Intermediate rolling was accomplished with an pneumatic tire roller making fifteen total passes across the mat. Finish rolling was conducted by a second Ingersoll Rand DD 90 making six total passes across the mat.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mixture are provided in Tables A129-A133.

Table A127: Project 19 Mix Design Summary8						
Infor	mation					
JMF I.D. Number:	NA					
Date(s) on Project:	6/23/03					
Number of Stockpiles Used:	4					
- Coarse Aggregate Angularity:	NA					
- Fine Aggregate Angularity:	NA					
Percent RAP:	10					
Gradation:	9.5mm Fine Graded					
Ninitial, Ndesign, Nmax:	NA/ 75/ NA					
Type Asphalt Binder Used:	PG 67-22					
Design Asphalt Binder Content:	5.5					
Type Modifier Used:	NA					
Type Anti-Strip Additive Used:	NA					
Percent Anti-Strip Used:	NA					
Design Voids in Total Mix:	4.0					
Design Voids in Mineral Aggregate:	NA					
Design Voids Filled with Asphalt:	NA					
Tensile Strength Ratio:	NA					
Dust/Asphalt Ratio:	NA					

Table A	Table A128: Design Gradation for Project 17									
Sieve Size	Sieve Size, mm	Recommended Limits from Job Mix	Percent Passing							
11/2 in.	37.5		100							
1 in.	25.0		100							
³ ⁄ ₄ in.	19.0		100							
¹⁄₂ in.	12.5		100							
3/8 in	9.5		98							
No. 4	4.75		70							
No. 8	2.36		46							
No. 16	1.18									
No. 30	0.6									
No. 50	0.3		15							
No. 100	0.15									
No. 200	0.075		6.2							

Table A12	9: Results	from SGC C	compaction	าร										Ndesign = 75
Project:	19													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. ((Gse):	Bulk Sp. Gr.	(Gsb):	Mix Description: 9.5mm Fine				9/11/2003	
AC Sp. Gr. (Gb) =			2.747		2.736		2.639						
		1.028												
				Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	SSD	Bulk	тмр	Aggregate	AC by					Eff. AC
Number	Number	Content	(ame)	(ame)	(ams)	(Gmb)	(Gmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
			(giiis)	(giiis)	(gins)	(dilib)	(Gillin)	CC	%	pcf			l	%
1	1	5.5	4889.7	2889.5	4891.4	2.443	2.506	87.5	13.1	152.4	2.5	12.5	79.8	4.2
1	2	5.5	4866.4	2878.0	4868.6	2.445	2.506	87.5	13.1	152.5	2.4	12.5	80.4	4.2
1	3	5.5	4875.4	2886.1	4876.5	2.449	2.506	87.7	13.1	152.8	2.3	12.3	81.6	4.2
2	1	5.5	4851.6	2871.6	4853.0	2.449	2.509	87.7	13.1	152.8	2.4	12.3	80.4	4.2
2	2	5.5	4887.9	2892.1	4889.0	2.448	2.509	87.7	13.1	152.7	2.4	12.3	80.2	4.2
2	3	5.5	4888.8	2896.3	4889.9	2.452	2.509	87.8	13.1	153.0	2.3	12.2	81.4	4.2
Input By:													Checked By	/:
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter		VMA = Voids	in Mineral A	ggregate					
TMD = Theo	oretical Maximu	um Density		AC = Aspha	lt Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
am = aram				pcf = pound	s per cubic for	ot	VTM = Voids	in Total Mix						

Table A129: Results from SGC Compactions

Table A13	0: Results	of Height Sa	ample SGC Com	pactions							1	Ndesign = 75
Project:	19		-	-								Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	ion: 9.5mm Fine			9/11/2003
AC Sp. Gr. (Gb) =											
		1.028	2.747		2.736		2.639				-	
				Masses		SPECIF	SPECIFIC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	5.5	1372.0	775.4	1379.4	2.272	2.506	12.2	9.4	10.9	2688	4.2
1	2	5.5	1379.0	783.9	1385.9	2.291	2.506	12.3	8.6	10.0	1837	4.2
1	3	5.5	1251.6	716.2	1259.5	2.304	2.506	12.3	8.1	9.6	1632	4.2
1	4	5.5	1235.3	702.6	1243.2	2.285	2.506	12.2	8.8	10.3	2086	4.2
1	5	5.5	1200.2	674.9	1211.7	2.236	2.506	12.0	10.8	12.9	6257	4.2
1	6	5.5	1207.6	679.6	1217.4	2.245	2.506	12.0	10.4	12.2	4693	4.2
1	7	5.5	1154.3	639.5	1172.7	2.165	2.506	11.6	13.6	15.7	15409	4.2
1	8	5.5	1155.3	640.4	1172.5	2.171	2.506	11.6	13.4	15.4	12515	4.2
2	1	5.5	1329.2	760.9	1333.0	2.323	2.509	12.4	7.4	8.1	637	4.2
2	2	5.5	1326.3	761.1	1328.6	2.337	2.509	12.5	6.9	8.2	233	4.2
2	3	5.5	1237.6	701.1	1242.3	2.287	2.509	12.2	8.9	10.4	1666	4.2
2	4	5.5	1234.7	700.0	1239.9	2.287	2.509	12.2	8.9	10.6	1809	4.2
2	5	5.5	1206.6	673.5	1214.1	2.232	2.509	11.9	11.0	12.6	5276	4.2
2	6	5.5	1209.4	679.0	1216.8	2.249	2.509	12.0	10.4	12.3	3518	4.2
2	7	5.5	1168.2	647.2	1182.3	2.183	2.509	11.7	13.0	15.1	7915	4.2
2	8	5.5	1170.8	653.3	1186.4	2.196	2.509	11.8	12.5	14.6	7035	4.2
Input By:												
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter							
TMD = Theo	retical Maximu	um Density		AC = Aspha	It Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tota	al Mix				

Gradati	on			Sample	e 1		Sample 2				Ov			
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
12.5	3.12	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
9.5	2.75	98.7	99.2	98.5	98.8	0.4	98.5	98.7	98.8	98.7	0.2	98.7	0.1	98.0
4.75	2.02	73.3	75.2	74.9	74.5	1.0	73.4	74.3	73.2	73.6	0.6	74.1	0.6	70.0
2.36	1.47	48.2	49.4	49.1	48.9	0.6	49.8	50.9	50.1	50.3	0.6	49.6	1.0	46.0
1.18	1.08	34.0	34.6	34.5	34.4	0.3	34.8	35.5	35.2	35.2	0.4	34.8	0.6	
0.6	0.8	24.6	25.0	25.0	24.9	0.2	25.1	25.5	25.4	25.3	0.2	25.1	0.3	
0.3	0.58	17.4	17.6	17.8	17.6	0.2	17.6	17.9	17.9	17.8	0.2	17.7	0.1	15.0
0.15	0.43	10.1	10.2	10.4	10.2	0.2	10.1	10.4	10.4	10.3	0.2	10.3	0.0	
0.075	0.31	5.6	5.6	5.8	5.7	0.1	5.6	5.7	5.7	5.7	0.1	5.7	0.0	6.2
			Sam	nple 1			Sample 2				Overall			
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		5.48	5.63	5.52	5.54	0.08	5.29	5.31	5.34	5.31	0.03	5.43	0.16	5.5

Table A131: Gradations and Asphalt Contents

Test	#89's	
Bulk / Apparent Specific Gravity	2.601/2.726	
Absorption, %	1.8	
LA Abrasion, % Loss	9.7	
Flat and Elongated, %		
3 to 1	74.9	
5 to 1	37.7	
Coarse Aggregate Flow, %	44.8	
Crushed Content, %		
One Face	34.6	
Two+ Faces	65.4	
Data provided by either the agend	cy or determine	ed at NCAT lab

Table A132: Coarse Aggregate Properties for Project 19

Table A133: Fine Aggregate Properties for Project 19

Test	W-10's	M-10's	RAP					
Bulk / Apparent Specific Gravity	2.615/2.711	2.601/2.726	2.669/2.719					
Absorption, %	1.35	1.8	0.7					
Fine Aggregate Angularity, %	35.4		48.4					
Sand Equivalent	96		96					
Data provided by either the agency or determined at NCAT lab								
Project 20:

Project 20 was evaluated on June 26, 2003, and consisted of the placement of 38.1mm of new hot mix asphalt on the southbound lane of a United States highway. The mix consisted of a 12.5mm nominal maximum aggregate size fine-graded granite/limestone/RAP blend designed at an N_{design} of 80 gyrations resulting in a design asphalt content of 5.0 percent. The asphalt binder that was used was a PG 64-22 (unmodified). The weather conditions during paving were approximately 95°F and partly cloudy. The mix design and gradation information and gradation shape are provided in Tables A134 and A135.

The project was located approximately 15 miles from the Astec drum plant. Dump trucks fed the mix into the paver. Breakdown rolling was conducted by an Ingersoll Rand DD 90 roller making two passes in vibratory mode in medium amplitude and frequency, then making three passes in static mode. Finish rolling was conducted by a Dynapac roller making six total passes across the mat, starting at a temperature of 165°F.

While at the plant, the following materials were obtained: individual stockpiles that were used, asphalt binder used, and loose mixture. Results from the loose mixture are provided in Tables A136-A140.

213

Table A134: Project 20 Mix Design Summary8									
Inform	nation								
JMF I.D. Number:	NA								
Date(s) on Project:	6/26/03								
Number of Stockpiles Used:	6								
- Coarse Aggregate Angularity:	94/93								
- Fine Aggregate Angularity:	46								
Percent RAP:	10								
Gradation:	Coarse								
Ninitial, Ndesign, Nmax:	7/ 80/ 125								
Type Asphalt Binder Used:	PG 64-22								
Design Asphalt Binder Content:	5.0								
Type Modifier Used:	NA								
Type Anti-Strip Additive Used:	NA								
Percent Anti-Strip Used:	NA								
Design Voids in Total Mix:	4.0								
Design Voids in Mineral Aggregate:	14.5								
Design Voids Filled with Asphalt:	NA								
Tensile Strength Ratio:	0.92								
Dust/Asphalt Ratio:	1.07								

Table A1	135: Design G	radation for Pro	ject 20
Sieve Size	Sieve Size, mm	Recommended Limits from Job Mix	Percent Passing
11/2 in.	37.5		100
1 in.	25.0		100
³ / ₄ in.	19.0		100
¹ / ₂ in.	12.5		97
3/8 in	9.5		85
No. 4	4.75		55
No. 8	2.36		37
No. 16	1.18		29
No. 30	0.6		22
No. 50	0.3		11
No. 100	0.15		8
No. 200	0.075		4.9

Table A13	6: Results	from SGC C	Compaction	ns										Ndesign = 80
Project:	20													Date
			App. Sp. Gr.	(Gsa)	Eff. Sp. Gr. ((Gse):	Bulk Sp. Gr.	(Gsb):	Mix Description: 12.5mm Fine				9/11/2003	
AC Sp. Gr. (Gb) =					2.675		2.642						
		1.028	i .											
		1		Masses		SPECIFIC	GRAVITIES	VOLUME	S AT Ndes			VOIDS		
Sample	Specimen	Asphalt	In Air	In Water	990	Bulk	тмр	Aggregate	AC by					Eff. AC
Number	Number	Content	(ame)	(ame)	(gms)	(Cmb)	(Gmm)	Volume	Volume	Unit Weight,	VTM, %	VMA, %	VFA, %	Content
		1	(gins)	(giiis)	(giiis)	(Ginb)	(Giiiii)	СС	%	pcf				%
1	1	5.0	4831.5	2824.6	4835.0	2.403	2.482	86.4	11.7	150.0	3.2	13.6	76.6	4.5
1	2	5.0	4839.0	2833.7	4840.1	2.412	2.482	86.7	11.7	150.5	2.8	13.3	78.7	4.5
1	3	5.0	4823.8	2815.6	4825.3	2.400	2.482	86.3	11.7	149.8	3.3	13.7	75.9	4.5
		1												
2	1	5.0	4821.4	2823.5	4822.6	2.412	2.473	86.7	11.7	150.5	2.5	13.3	81.4	4.5
2	2	5.0	4821.4	2819.1	4822.6	2.406	2.473	86.5	11.7	150.2	2.7	13.5	80.0	4.5
2	3	5.0	4814.5	2808.6	4816.0	2.398	2.473	86.2	11.7	149.7	3.0	13.8	78.1	4.5
Input By:													Checked By	/:
SSD = Satur	ated Surface I	Dry		cc = cubic c	entimeter		VMA = Voids	s in Mineral A	ggregate					
TMD = Thec	pretical Maxim	um Density		AC = Aspha	It Cement		VFA = Voids	Filled With A	sphalt Ceme	nt				
am = aram				pcf = pound	s per cubic for	ot	VTM = Voids	s in Total Mix						

Table A136: Results from SGC Compactions

Table A137: Results of Height Sample SGC Compactions

Table A13	7: Results	of Height Sa	ample SGC Com	pactions								Ndesign = 80
Project:	20											Date
			App. Sp. Gr. (Gsa)		Eff. Sp. Gr. (Gse):		Bulk Sp. Gr. (Gsb):	Mix Descript	on: 12.5mm Fine			9/11/2003
AC Sp. Gr. (Gb) =						-					
		1.028			2.675		2.642					
				Masses		SPECIF	IC GRAVITIES		VO	IDS		
Sample Number	Specimen Number	Asphalt Content	In Air (gms)	In Water (gms)	SSD (gms)	Bulk (Gmb)	TMD (Gmm)	AC by Volume %	T166 VTM, %	CoreLok VTM, %	Avg Lab Perm (10E-5 cm/s)	Eff. AC Content %
1	1	5.0	1598.8	922.0	1600.8	2.355	2.482	11.5	5.1	5.8	0	4.5
1	2	5.0	1597.1	924.5	1599.8	2.365	2.482	11.5	4.7	5.7	0	4.5
1	3	5.0	1496.4	864.1	1497.7	2.362	2.482	11.5	4.8	6.8	127	4.5
1	4	5.0	1495.8	863.2	1496.6	2.362	2.482	11.5	4.9	6.3	293	4.5
1	5	5.0	1460.9	840.7	1462.2	2.351	2.482	11.4	5.3	6.1	0	4.5
1	6	5.0	1459.4	840.4	1460.2	2.355	2.482	11.5	5.1	5.8	0	4.5
1	7	5.0	1408.0	810.1	1412.2	2.338	2.482	11.4	5.8	5.7	0	4.5
1	8	5.0	1405.9	808.6	1407.4	2.348	2.482	11.4	5.4	5.7	0	4.5
2	1	5.0	1600.7	926.3	1602.0	2.369	2.473	11.5	4.2	5.3	143	4.5
2	2	5.0	1595.7	919.4	1596.8	2.356	2.473	11.5	4.7		158	4.5
2	3	5.0	1557.7	900.3	1559.7	2.362	2.473	11.5	4.5	9.8	0	4.5
2	4	5.0	1544.2	891.6	1545.8	2.360	2.473	11.5	4.6	5.7	115	4.5
2	5	5.0	1525.7	872.4	1527.9	2.328	2.473	11.3	5.9	6.9	0	4.5
2	6	5.0	1498.5	851.1	1502.9	2.299	2.473	11.2	7.0	8.3	0	4.5
2	7	5.0	1487.8	841.7	1492.4	2.286	2.473	11.1	7.5	8.8	674	4.5
2	8	5.0	1459.9	822.0	1468.9	2.257	2.473	11.0	8.7	10.0	1117	4.5
Input By:												
SSD = Satur	ated Surface [Dry		cc = cubic ce	entimeter							
TMD = Theo	retical Maximu	um Density		AC = Asphal	t Cement							
gm = gram				pcf = pounds	s per cubic foot		VTM = Voids in Tot	al Mix				

Gradati	on			Sample	e 1		Sample 2				Ον			
Sieve Size (mm)	Sieve [^] 0.45	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	JMF
37.50	5.11	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
25.0	4.26	100.0	100.0	100.0	100.0	0.0	100.0	100.0	100.0	100.0	0.0	100.0	0.0	100.0
19	3.76	100.0	100.0	100.0	100.0	0.0	100.0	99.0	100.0	99.7	0.6	99.8	0.2	100.0
12.5	3.12	98.2	98.2	98.4	98.3	0.1	97.9	96.2	97.5	97.2	0.9	97.7	0.8	97.0
9.5	2.75	88.4	90.1	87.8	88.8	1.2	88.0	87.4	89.6	88.3	1.1	88.6	0.3	85.0
4.75	2.02	60.5	61.4	58.2	60.0	1.7	58.9	57.8	61.1	59.3	1.7	59.7	0.5	55.0
2.36	1.47	43.4	43.9	41.7	43.0	1.2	42.7	41.1	43.3	42.4	1.1	42.7	0.4	37.0
1.18	1.08	36.4	36.9	35.3	36.2	0.8	35.3	34.3	35.9	35.2	0.8	35.7	0.7	29.0
0.6	0.8	30.4	30.8	29.6	30.3	0.6	29.2	28.4	29.6	29.1	0.6	29.7	0.8	22.0
0.3	0.58	12.5	12.8	12.2	12.5	0.3	12.4	12.1	12.5	12.3	0.2	12.4	0.1	11.0
0.15	0.43	6.7	6.9	6.5	6.7	0.2	6.9	6.8	7.0	6.9	0.1	6.8	0.1	8.0
0.075	0.31	4.4	4.6	4.3	4.4	0.2	4.7	4.5	4.7	4.6	0.1	4.5	0.1	4.9
			Sam	nple 1				Sar	nple 2			Ον	erall	
Asphalt Co	ontent	Rep1	Rep2	Rep3	Avg.	Std Dev	Rep1	Rep2	Rep3	Avg.	Std Dev	Avg.	Std Dev	Opt. AC
		4.97	4.93	4.76	4.89	0.11	4.73	4.80	4.80	4.78	0.04	4.83	0.08	5.00

Table A138: Gradations and Asphalt Contents

Test	#78's LMS	Shot GVL
Bulk / Apparent Specific Gravity	2.741/2.773	2.588/2.645
Absorption, %	0.41	0.84
LA Abrasion, % Loss	8.3	
Flat and Elongated, %		
3 to 1	81.9	72.4
5 to 1	18.1	7.3
Coarse Aggregate Flow, %	46.7	39.3
Crushed Content, %		
One Face	100	17.6
Two+ Faces	100	82.3
Data provided by either the agend	cy or determine	ed at NCAT lab

Table A139: Coarse Aggregate Properties for Project 20

Table A140: Fine Aggregate Properties for Project 20

Test	LMS Scrns	Cr. GVL	Sand	RAP					
Bulk / Apparent Specific Gravity	2.680/2.856	2.624/2.649	2.552/2.647	2.797/2.926					
Absorption, %	2.3	0.4	1.4	1.57					
Fine Aggregate Angularity, %	44.1	47.5	49.3	42.9					
Sand Equivalent 87 92 97 90									
Data provided by either the agend	cy or determine	ed at NCAT lab							

TASK 5 APPENDIX B

FIELD PROJECT REPORTS, TEST RESULTS AND DISCUSSION

In the following section of the report, brief site reports are presented for each of the twenty projects evaluated. The information consists of a description of the actual construction project, mix design information, quality control data from the mobile laboratory, and test results from the cores and loose mix brought back to NCAT. The project evaluations were based on the results produced from the actual mixture being placed at the time of the evaluations and not on the job mix formulas. An overall analysis of the combined results obtained from all the projects is presented after the presentation of the individual projects.

5.1 Project 1:

Project 1was the overlay of an existing HMA pavement on a two-lane county highway. The mix consisted of a 9.5 mm NMAS fine-graded blend designed at an N_{design} of 65 gyrations. The optimum binder content for the mix was 5.8 percent. The asphalt binder for this project was a PG 70-22.

Average test results from Project 1 are presented in Table 4. Results include asphalt contents (solvent extraction) and washed gradations of the extracted aggregate. The results are separated into the individual sublots evaluated during the day on site.

Gradation		Ov	verall	Su	blot 1	Su	blot 2
Sieve Size (mm)	JMF	Avg	% Diff ¹	Avg	% Diff ¹	Avg	% Diff ¹
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0	100.0	0.0
12.5	100.0	99.9	0.1	99.9	0.1	99.9	0.1
9.5	94.5	95.1	-0.6	95.6	-1.1	94.5	0.0
4.75	64.7	67.9	-3.1	68.8	-4.1	66.9	-2.2
2.36	52.6	52.0	0.6	52.0	0.6	52.0	0.6
1.18	39.2	38.8	0.4	38.6	0.6	39.0	0.2
0.6	29.6	30.3	-0.7	30.3	-0.7	30.4	-0.8
0.3	15.7	17.0	-1.3	17.3	-1.6	16.7	-1.0
0.15	8.0	8.8	-0.8	9.1	-1.1	8.5	-0.5
0.075	4.8	5.3	-0.5	5.5	-0.7	5.2	-0.4
Asphalt Content	5.8	5.5	0.3	5.3	0.5	5.7	0.1

Table 4: Average Gradations and Binder Contents per Sublot, Project 1

Note: 1) Percent Difference Between JMF and Actual

Based on Table 4, the average binder content of the obtained samples was 5.5 percent, 0.3 percent lower than the job mix formula. The binder content for sublot 1 was 5.3 percent, 0.5 percent lower than the JMF, while for sublot 2 the binder content was 5.7 percent, 0.1 percent lower than the JMF. The overall average gradation was fairly close to the job mix formula values, with the largest difference coming on the 4.75mm sieve (3.1 percent finer than the job mix formula (JMF)). Gradations for both sublots were reasonably close to the job mix formula.

Table 5 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis), and water absorption values (from AASHTO T166) for each core taken from Project 1. One core was damaged during transportation back to NCAT and could not be tested. Table 6 presents the average in-place air voids for the combined data and for each sublot. Also included are the standard deviations for the combined data and for each sublot. An initial observation of Table 6 shows that, on average, the dimensional analysis method of determining the bulk specific gravity yielded the highest air void contents, followed by the CoreLok method, AASHTO T166, and the CoreReader, respectively.

Sample		T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID	Sublot	VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	6.9	6.6	5.8	8.6	0.4
2	1	8.1	8.5	8.2	10.7	0.7
3	1	8.6	9.1	7.3	10.4	0.8
4	1	7.8	8.2	6.2	10.7	0.8
5	1	7.3	8.0	5.4	9.3	0.7
6	2	6.7	6.2	4.9	8.7	0.7
7	2			Damage	d	
8	2	12.4	14.1	14.1	16.8	2.1
9	2	9.3	9.6	8.9	10.9	1.1
10	2	7.9	8.4	6.6	10.0	1.0

Table 5: Core In-place Air Voids and Water Absorption, Project 1

	T166		CoreLok		Cor	eReader	Dimensional		
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	8.3	1.7	8.8	2.3	7.5	2.8	10.7	2.4	
sublot 1	7.7	0.7	8.1	0.9	6.6	1.1	9.9	1.0	
sublot 2	9.1	2.5	9.6	3.3	8.6	4.0	11.6	3.6	

Table 6: Average Core In-place Air Voids and Standard Deviations, Project 1

The in-place air voids from the project averaged 8.3 percent, ranging from a low of 6.7 percent to a high of 12.4 percent, based upon AASHTO T166 bulk specific gravity measurements. The average in-place air voids for sublot 1 was 7.7 percent and 9.1 percent for sublot 2.

Lift thickness, field, and lab permeability results for cores are shown in Table 7. As mentioned earlier, one core was damaged and could not be tested. From the lift thickness results in Table 7, the average lift thickness for the project was 48.7 mm, 10.6 mm higher than the design thickness. Lift thickness ranged from 38.8 mm to 66.9 mm or from a t/NMAS ratio of 4.1:1 to 7.0:1.

The relationship between lift thickness and in-place air voids is shown in Figure 7. There was a very weak relationship between the two properties as the coefficient of determination was low ($R^2 = 0.07$). An analysis of variance (ANOVA) for the regression confirmed that the relationship was not significant (probability of F-statistic greater than F-critical (p-value) was 0.49). Also, the thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

 Table 7: Average Lift Thickness, Field, and Lab Permeability for Cores, Project 1

 Sample ID Sublot Avg Thickness Avg Field Permeability

		(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	43.1	3	0
2	1	45.4	31	21
3	1	47.9	33	88
4	1	47.7	22	43
5	1	38.8	10	7
6	2	66.9	9	0
7	2	NA	211	NA
8	2	44.1	345	279
9	2	50.4	67	75
10	2	53.7	7	16

NA = No Data

The in-place density results determined by the Pavement Quality Indicator (PQI) are presented in Table 8. The three individual runs correlate to the three individual field permeability test locations shown in Figure 2. The core average is the average of five density measurements from the location the core was taken. The five measurements were taken in a counter-clockwise fashion and one measurement taken directly in the middle of the core location.

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	130.1	129.8	129.8	129.5
2	1	127.8	127.8	127.4	127.9
3	1	127.8	126.0	127.5	127.5
4	1	127.0	127.2	127.3	127.2
5	1	127.8	127.7	127.9	127.9
6	2	129.4	128.1	127.6	128.3
7	2	124.0	124.3	124.3	124.2
8	2	122.7	123.7	123.4	123.6
9	2	126.2	126.2	126.5	125.9
10	2	129.0	128.5	128.9	128.3

Table 8: Pavement Quality Indicator In-place Density Results, Project 1

Figure 7: Relationship of Lift Thickness and In-place Air Voids, Project 1

Figures 8 and 9 illustrate the relationship between permeability and air voids. Figure 8 was included to give a comparison of the relationship when test locations that had no permeability were included in the regression. Figure 9 shows the relationship when these points were removed form the regression. This comparison was demonstrated for this first project only. For the remaining projects, only the regression that does not include zero permeability points is presented.

Figure 8 illustrates three relationships between permeability and air void content with all test locations included. These relationships include field and lab permeability results versus in-place air voids and lab permeability results versus air void content for the lab compacted samples that were produced in NCAT's mobile lab. The lab permeability results for the lab compacted samples are presented in Table 9. Observation of the air voids for the lab compacted samples indicated that the air void contents were higher than anticipated. This was also observed for several other projects described later. This may have been caused by several things, such as aggregate orientation or a thin design lift thickness using larger nominal maximum aggregate sizes. This observation of the difficulty compacting to a design lift thickness suggests that there is a need for a minimum lift thickness for nominal maximum aggregate sizes.

Based on Figure 8, the R² value for the field permeability results versus in-place air voids was 0.87, which represents a strong correlation. There was also a reasonable correlation between the lab permeability results on cores versus in-place air voids (R² = 0.64). A strong correlation was also observed for the lab permeability results for the lab compacted samples (R² = 0.85). Previous research has shown that for the majority of pavement types, the permeability value that correlates to excessive permeability ranges from 100 to $150x10^{-5}$ cm/s (<u>10</u>, <u>11</u>, <u>12</u>). Throughout the discussion of the individual projects, a permeability value of $125x10^{-5}$ cm/s, which is the average between the two values taken from the literature, was used for assessing the in-place air void content at which mixes became permeable. Based upon a permeability value of $125x10^{-5}$ cm/s, Project 1 started to show excessive permeability between 10.5 and 11 percent in-place air voids for all three relationships.

In Figure 9, the regression for the field permeability data stayed at 0.87. The regression for the lab permeability results conducted on the cores increased to 0.78, which is a stronger correlation that the regression with all data points included. For the lab permeability data for the lab compacted samples, the regression increased to 0.89. All three relationships still indicated that the mix became permeable at in-place air voids between 10 and 11 percent.

Figure 8: Relationships between Permeability and In-place Air Voids, All Data Points, Project 1.

Figure 9: Relationships between Permeability and In-place Air Voids, Zero Perm Points Removed, Project 1.

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM %	(10x-5 cm/s)
1	1	7.8	8
2	1	7.7	11
3	1	8.2	37
4	1	8.1	52
5	1	10.4	142
6	1	10.8	142
7	1	12.3	521
8	1	12.7	347
9	2	6.3	0
10	2	6.3	0
11	2	9.7	121
12	2	9.9	87
13	2	10.9	238
14	2	11.1	141
15	2	12.4	260
16	2	12.2	388

Table 9: Lab Permeability Results for Lab Compacted Samples, Project 1

5.2 Project 2

Project 2 involved the placement of hot mix asphalt (HMA) for a new pavement. The mix consisted of a 19.0 mm NMAS coarse-graded blend designed at an N_{design} of 65 gyrations. The optimum binder content for the mix was 5.3 percent. The asphalt binder used for this project was a PG 64-22.

Average test results from the plant produced material for the project are presented in Table 10. Results include asphalt content (solvent extraction) and washed gradation of the extracted aggregate. These results are separated into the individual sublots evaluated during the day on site.

Table 10: Average Gradations and Binder Contents per Sublot, Project 2

Gradation		Overall		Sublot 1		Sublot 2	
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0

19	99.6	100.0	-0.4	100.0	-0.4	100.0	-0.4
12.5	88.9	87.8	1.1	88.2	0.7	87.4	1.5
9.5	76.8	71.4	5.4	72.7	4.1	70.2	6.6
4.75	52.2	41.2	11.1	42.0	10.2	40.3	11.9
2.36	30.3	26.4	3.9	27.1	3.2	25.7	4.6
1.18	19.3	19.5	-0.2	20.4	-1.1	18.7	0.6
0.6	14.1	14.9	-0.8	15.5	-1.4	14.3	-0.2
0.3	8.2	8.9	-0.7	9.3	-1.1	8.5	-0.3
0.15	5.9	6.4	-0.4	6.6	-0.7	6.1	-0.2
0.075	4.6	5.2	-0.6	5.4	-0.8	5.0	-0.4
Asphalt Content	5.3	4.7	0.6	4.7	0.6	4.7	0.6

From Table 10, the average binder content from the obtained samples for both sublots was 4.7 percent, 0.6 percent lower than the job mix formula. The overall average gradation for the two sublots deviated from the job mix formula values, with the largest difference coming on the 4.75mm sieve (11.1 percent less than the JMF).

Table 11 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption (AASHTO T166) values for each core taken from Project 2. Average in-place air voids for Project 2 was 6.5 percent, ranging from a low of 4.2 percent to a high of 10.3 percent. For sublot 1, the average air void content was 6.0 percent, and for sublot 2 the average air void content was 6.9 percent, using AASHTO T166 test method. In Table 12, average core in-place air voids and standard deviations are shown for each sublot. Both the water displacement method and the CoreReader produced very similar in-place air void contents. As with Project 1, dimensional analysis provided the highest in-place air void contents.

Sample ID	Sublot	T166 VTM, %	CoreLok VTM, %	CoreReader VTM, %	Dimensional VTM, %	Water Abs., %(T166)
1	1	4.2	4.7	1.8	7.0	0.3
2	1	10.3	14.4	13.7	14.7	3.6

3	1	4.1	5.7	3.9	7.7	0.5
4	1	5.1	5.9	4.6	8.0	0.4
5	1	6.5	8.1	6.5	9.5	0.6
6	2	7.3	8.4	7.0	10.2	0.7
7	2	6.7	7.8	7.0	9.5	0.5
8	2	6.2	7.0	6.6	9.4	0.6
9	2	6.9	8.1	7.2	9.5	0.7
10	2	7.2	8.1	6.8	9.6	0.5

Table 12: Average Core In-place Air Voids and Standard Deviations, Project 2

	T166		С	CoreLok		eReader	Dimensional		
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	6.5	1.8	7.8	2.6	6.5	3.1	9.5	2.1	
sublot 1	6.0	2.6	7.8	3.9	6.1	4.6	9.4	3.1	
sublot 2	6.9	0.4	7.9	0.5	6.9	0.2	9.6	0.3	

Table 13 contains average lift thickness, field, and lab permeability results on cores taken for Project 2. Table 13 shows the average lift thickness for the project to be 65.7 mm, 2.2 mm higher than the target thickness. Thicknesses ranged from 54.6 mm to 77.7 mm, or from a t/NMAS ratio of 2.9:1 to 4.1:1. Several cores could not be tested because they could not fit into the lab permeability device. These samples were cut down to a size that would fit the device and tested. The remaining two cores were damaged during sawing and could not be tested. PQI density results are presented in Table 14.

The relationship between lift thickness and in-place air voids is shown in Figure 10. As with Project 1, the relationship produced a low R^2 (0.03). An ANOVA for the regression confirmed that the relationship was not significant (p-value of 0.613). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

Table 13: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 2

Sample	Sublot	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
ID		(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	67.2	9	0
2	1	60.2	288	NA
3	1	56.4	1	0
4	1	54.6	1	8
5	1	68.0	39	0
6	2	66.4	20	19
7	2	77.7	15	NA
8	2	67.6	2	0
9	2	68.0	15	12
10	2	70.6	9	0

NA = No Data

			1		5 , 5
Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	129.6	130.7	130.9	130.8
2	1	127.7	127.3	126.9	127.2
3	1	130.9	130.6	130.9	131.3
4	1	130.5	126.8	125.6	129.9
5	1	128.3	124.5	127.9	126.0
6	2	129.3	128.1	127.6	128.2
7	2	125.6	127.2	128.0	125.3
8	2	127.9	127.6	128.1	128.2
9	2	128.4	127.9	127.8	126.6
10	2	128.4	128.8	128.5	128.0

Table 14: Pavement Quality Indicator In-place Density Results, Project 2

Figure 10: Relationship of Lift Thickness and In-place Air Voids, Project 2

The relationship between in-place air voids and permeability for Project 2 is shown in Figure 11. Similar to Figure 9, Figure 11 includes field permeability and lab permeability results versus in-place air voids and lab permeability results for the lab compacted height samples from the mobile lab. Results from the lab permeability tests conducted on the lab compacted samples are presented in Table 15. From the results of field permeability testing, there was a reasonable correlation between in-place air voids and field permeability ($R^2 = 0.61$). There was also a strong correlation between the lab permeability results for the lab samples and in-place air voids ($R^2 = 0.81$). A trend could not be made for the relationship between lab permeability results for cores and in-place air voids because the permeability values were close to zero for the range of air voids measured from the cores. But from observation of the other two relationships, both follow the same trend until about 7.5 percent air voids, when the field permeability results tended to increase at a higher rate than the lab permeability. The regression equations for the field permeability and lab permeability results for the lab samples indicated that the mix became permeability at in-place air voids between 7.8 (lab samples) and 10.5 (field permeability and cores).

Figure 11: Relationship Between Permeability and In-place Air Voids, Project 2.

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	5.2	0
2	1	4.5	0
3	1	5.5	0
4	1	5.8	0
5	1	6.8	0
6	1	6.6	0
7	1	8.7	753
8	1	8.2	131
9	2	4.1	0
10	2	5.4	0
11	2	7.4	0

Table 15: Lab Permeability Results for Lab Compacted Samples, Project 2

12	2	7.1	0
13	2	7.5	135
14	2	9.3	405
15	2	9.8	1941
16	2	10	1942

5.3 *Project 3*:

Project 3 was an overlay of an existing HMA pavement on a two-lane county highway. The mix consisted of a 9.5 mm NMAS coarse-graded blend designed at an N_{design} of 65 gyrations. Optimum binder content for the mix was 5.5 percent. The asphalt binder for this project was a PG 64-22.

Average test results from Project 3 are presented in Table 16. Results include asphalt contents (solvent extraction) and washed gradations of the extracted aggregate. These results are separated into the individual sublots evaluated during the day on site.

Gradation		Ov	erall	Sub	olot 1	Sut	olot 2	Sub	olot 3
Sieve Size (mm)	JMF	Avg	% Diff						
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0	99.9	0.1	100.0	0.0
12.5	100.0	98.8	1.2	98.9	1.1	98.7	1.3	98.6	1.4
9.5	95.7	92.2	3.5	91.2	4.5	93.1	2.6	92.3	3.4
4.75	56.7	52.8	3.9	51.8	4.9	55.4	1.3	51.2	5.5
2.36	39.1	33.5	5.6	33.0	6.1	35.5	3.6	32.0	7.1
1.18	30.0	25.8	4.2	25.4	4.6	27.3	2.7	24.7	5.3
0.6	21.9	19.5	2.4	19.1	2.8	20.7	1.2	18.7	3.2
0.3	13.2	11.7	1.5	11.4	1.8	12.5	0.7	11.0	2.2

Table 16: Average Gradation and Binder Content per Sublot, Project 3

0.15	9.6	8.0	1.6	8.0	1.6	8.7	0.9	7.5	2.1
0.075	6.1	5.7	0.4	5.6	0.5	6.1	0.0	5.3	0.8
Asphalt Content	5.5	5.5	0.0	5.5	0.0	5.6	-0.1	5.5	0.0

From Table 16, the average binder content from the obtained samples for Project 3 was 5.5 percent, which matched the design binder content. The measured asphalt contents for all three sublots were approximately the same as the job mix formula. The average gradation for Project 3 was coarser than the job mix formula, with the largest difference being on the 2.36mm sieve (5.6 percent lower than the JMF).

Table 17 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for each core taken from Project 3. Two cores were damaged while being brought back to NCAT and could not be tested. Table 18 shows that the average in-place air voids for Project 3 was 9.0 percent, ranging from a low of 5.1 percent to a high of 11.9 percent, based on AASHTO T166 testing. For sublot 1, the average air void content was 9.7 percent, for sublot 2 the average air void content was 9.4 percent, and for sublot 3 the average air void content was 8.1 percent (AASHTO T166).

Sample	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID	VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	11.9	15.4	13.4	16.8	4.9
2	11.4	13.4	11.3	15.8	4.2
3	7.6	9.6	9.4	12.2	1.7
4	10.6	12.7	12.2	15.0	3.6
5	7.2	8.2	7.2	10.5	1.1
6	9.8	12.8	10.7	15.5	3.3
7	8.6	11.2	11.4	14.5	1.5
8			Damag	ged	
9			Damag	jed	

Table 17: Core In-place Air Voids and Water Absorption, Project 3

10	9.8	11.3	10.5	13.7	2.5	
11	5.2	6.2	3.1	8.8	0.9	
12	5.1	5.9	4.4	8.3	0.8	
13	11.8	16.4	12.4	17.2	5.1	
14	9.6	11.3	10.1	14.4	3.1	
15	8.8	11.0	11.8	14.8	2.2	

Table 18: Average Core In-place Air Voids and Standard Deviations, Project 3

	T166		Co	oreLok	Cor	CoreReader Dim		ensional
	avg	std dev	avg	std dev	avg	std dev	avg	std dev
all data	9.0	2.3	11.2	3.2	9.9	3.1	13.7	2.9
sublot 1	9.7	2.2	11.9	2.9	10.7	2.4	14.1	2.6
sublot 2	9.4	0.7	11.8	0.9	10.9	4.6	14.6	0.9
sublot 3	8.1	2.9	10.2	4.3	8.4	4.3	12.7	3.9

Average lift thickness, field, and lab permeability results for cores are presented in Table 19. As mentioned earlier, Project 3 was designed with a lift thickness of 38.1 mm. From the data in Table 19, the average lift thickness for Project 3 was 32.3 mm, 5.8 mm lower than the design thickness. The lift thickness ranged from 25.7 to 39.9 mm, or a t/NMAS ratio of 2.7:1 to 4.2:1. PQI density results for Project 3 are presented in Table 20.

The relationship between lift thickness and in-place air voids can be seen in Figure 12. From observation of the data in Figure 12, there was no relationship between the two properties. This was confirmed by conducting an ANOVA on the regression (p-value = 0.965). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

Table 19: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 3

	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID Sublot	(mm)	(10x-5 cm/s)	(10x-5 cm/s)

1	1	33.8	2833	1711
2	1	39.9	1392	1171
3	1	35.3	277	115
4	1	26.6	900	547
5	1	39.2	154	75
6	2	25.7	932	NA
7	2	36.8	319	386
8	2	Damaged	1276	Damaged
9	2	Damaged	757	Damaged
10	2	35.5	470	323
11	3	28.0	22	14
12	3	31.3	7	9
13	3	26.8	602	1407
14	3	32.6	1290	750
15	3	28.1	450	388

 $\overline{NA} = No Data Available}$

Table 20: Pavement Quality Indicator In-place Density Results, Project 3

Test	Sublot	Run1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	121.4	121.6	122.1	121.7
2	1	119.3	120.0	121.0	120.1
3	1	122.6	123.3	120.7	122.2
4	1	121.4	119.2	121.7	120.8
5	1	122.7	123.1	123.2	123.0
6	2	122.7	121.7	122.2	122.2
7	2	123.3	122.6	121.4	122.4

8	2	121	120.6	121.0	120.9
9	2	121.2	120.8	121.2	121.1
10	2	120.4	120.6	121.0	120.7
11	3	139.3	139.1	131.4	136.6
12	3	137.1	136.3	136.6	136.7
13	3	122.8	123	123.6	123.1
14	3	121.6	121	119.7	120.8
15	3	124.5	125.2	124.3	124.7

Figure 12: Relationship Between Lift Thickness and In-place Air Voids, Project 3

Figure 13 contains the relationship between in-place air voids and permeability. In Figure 13, the data is presented for three relationships: field permeability and lab permeability results versus core in-place air voids, and lab permeability results for the lab compacted samples produced in the mobile lab. The lab permeability results on the lab compacted samples are presented in Table 21. As discussed previously, the air void contents for the lab compacted samples were higher than anticipated, due to aggregate orientation within the thin lift thickness. Based on Figure 13, there was a strong relationship for all three plots (R^2 values of 0.89, 0.97, and 0.87, respectively). Based on the regression lines, the mix became permeable at an in-place air void content between 7 and 8 percent for all three relationships.

Figure 13: Relationship Between Permeability and In-place Air Voids, Project 3

	Table 21: Lab Permeability	Results for Lab Com	pacted Samples, Project 3
--	----------------------------	---------------------	---------------------------

			Avg Lab				Avg Lab
Sample		T166	Permeability	Sample		T166	Permeability
ID	Sublot	VTM, %	(10x-5 cm/s)	ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	8.2	354	17	3	8.7	348
2	1	6.9	21	18	3	10.0	1571
3	1	7.9	238	19	3	11.7	2325
4	1	8.9	424	20	3	10.7	2293
5	1	8.7	393	21	3	11.2	3423

6 1	l	8.9	626	22	3	11.4	3448
7 1	l	11.8	6936	23	3	12.0	6794
8 1	l	12.4	3111	24	3	11.5	6881
9 2	2	7.7	269				
10 2	2	7.8	205				
11 2	2	9.3	787				
12 2	2	8.7	314				
13 2	2	10.9	779				
14 2	2	11.5	2324				
15 2	2	12.5	3907				
16 2	2	12.5	2307				

5.4 *Project 4*:

Project 4 was the placement of a hot mix asphalt on an aggregate base on the shoulder of an interstate highway. The mix consisted of a 12.5 mm NMAS fine-graded blend designed at an N_{design} of 75 gyrations. The optimum binder content for Project 4 was 5.7 percent. The asphalt binder used was an RA295.

Average binder content (solvent extraction) and washed gradation test results are presented in Table 22. Results are separated into the three sublots taken during the day on site. The average binder content from the obtained samples for Project 4 produced mix was 5.0 percent, 0.7 percent lower than the job mix formula. For sublot 1, the measures asphalt content was 4.9 percent, 0.8 percent lower than the JMF. Sublot 2 had an asphalt content of 5.0, 0.7 percent lower than the job mix formula, and sublot 3 had a measured asphalt content of 5.1 percent, 0.6 percent lower than the JMF. Based on the average gradation data in Table 19, the average mix gradation was close to the job mix formula, with the largest difference coming on the 1.18mm sieve (2.0 percent coarser than the JMF).

Table 22: Average Gradations and Binder Contents per Sublot, Project 4

239

Gradation		Ov	erall	Sub	olot 1	Sut	olot 2	Sub	olot 3
Sieve Size (mm)	JMF	Avg	% Diff						
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	99.5	0.5	99.5	0.5	99.8	0.2	99.2	0.8
12.5	93.0	94.1	-1.1	95.1	-2.1	94.0	-1.0	93.2	-0.2
9.5	86.0	87.9	-1.9	89.2	-3.2	87.4	-1.4	87.1	-1.1
4.75	66.0	67.3	-1.3	67.8	-1.8	67.0	-1.0	67.1	-1.1
2.36	47.0	47.4	-0.4	47.7	-0.7	47.1	-0.1	47.4	-0.4
1.18	35.0	33.0	2.0	33.5	1.5	32.6	2.4	32.9	2.1
0.6	26.0	25.1	0.9	25.6	0.4	24.8	1.2	24.8	1.2
0.3	19.0	18.7	0.3	19.4	-0.4	18.5	0.5	18.3	0.7
0.15	9.0	10.6	-1.6	11.2	-2.2	10.6	-1.6	10.1	-1.1
0.075	4.7	4.8	-0.1	5.3	-0.6	4.9	-0.2	4.1	0.6
Asphalt Content	5.7	5.0	0.7	4.9	0.8	5.0	0.7	5.1	0.6

Table 23 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and the water absorption values (from AASHTO T166) for each core obtained from Project 4. The average in-place air void results and standard deviations are presented in Table 23. Observation of Tables 23 and 24 shows that the average in-place air void content was 6.1 percent, ranging from 4.9 to 7.9 percent, based on AASHTO T166 bulk specific gravity measurements. Standard deviation values were generally low for all test procedures.

Table 23: Core In-place Air Voids and Water Absorption, Project 4

Sample ID	Sublot	T166 VTM, %	CoreLok VTM, %	CoreReader VTM, %	Dimensional VTM, %	Water Abs., %(T166)
1	1	5.7	5.7	4.9	6.9	0.3
2	1	5.5	5.6	5.7	6.9	0.3
3	1	5.7	5.6	5.6	7.2	0.4
4	1	5.7	6.4	5.1	7.1	0.5
5	1	4.9	5.3	5.0	6.5	0.3

6	2	5.8	5.7	5.0	6.5	0.4
7	2	6.1	6.3	5.1	7.1	0.3
8	2	6.2	6.3	5.8	7.4	0.4
9	2	5.1	5.3	4.0	5.6	0.3
10	2	6.8	7.0	5.7	7.8	0.6
11	3	6.2	7.0	5.9	7.5	0.4
12	3	7.9	11.3	8.3	9.9	0.6
13	3	7.4	8.0	7.0	9.1	0.6
14	3	5.8	6.1	4.6	7.4	0.4
15	3	6.7	6.7	5.9	7.5	0.3

Table 24: Average Core In-place Air Voids and Standard Deviations, Project 4

	T166		C	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	6.1	0.8	6.6	1.5	5.6	1.0	7.4	1.0	
sublot 1	5.5	0.3	5.7	0.4	5.3	0.4	6.9	0.3	
sublot 2	6.0	0.6	6.1	0.6	5.1	0.7	6.9	0.9	
sublot 3	6.8	0.9	7.8	2.1	6.3	1.4	8.3	1.1	

Table 25 presents lift thickness, field, and lab permeability results for cores from Project 4. The design lift thickness for Project 4 was 63.5 mm. On average, the lift thickness was 68.6 mm, 5.1 mm larger than the design lift thickness. Lift thickness ranged from a low of 49.1 mm to a high of 89.6 mm, resulting in a t/NMAS of 3.9:1 to 7.2:1. PQI density results are presented in Table 26.

The relationship between lift thickness and in-place air voids is shown on Figure 14. A poor R^2 value was produced from the regression (0.18). An ANOVA conducted on the regression confirmed that the relationship was not significant (p-value = 0.12). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

Table 25: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 4

Sample		Avg Thickness	Avg Field Permeability	Avg Lab Permeability
ID	Sublot	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	82.6	23	0
2	1	61.2	39	201
3	1	79.5	64	0
4	1	75.3	129	0
5	1	58.1	53	0
6	2	89.6	41	0
7	2	74.1	49	12
8	2	87.3	95	13
9	2	81.3	90	14
10	2	77.8	52	36
11	3	58.6	87	26
12	3	49.1	812	113
13	3	52.3	382	21
14	3	51.4	92	17
15	3	50.3	136	34

Table 26: Pavement Quality Indicator In-place Density Results, Project 4

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	125.1	125.9	126.5	125.3
2	1	125.4	124.8	125.9	125.3
3	1	124.1	123.5	124.4	124.6
4	1	123.9	124.4	124.0	124.0
5	1	124.1	124.4	124.5	124.3
6	2	124.8	123.8	124.7	124.3
7	2	123.3	123.4	124.1	123.8
8	2	123.7	123.8	124.0	124.1
9	2	123.0	122.5	122.4	122.7
10	2	123.6	123.7	124.3	123.9
11	3	126.2	125.4	125.6	125.6
12	3	123.1	122.3	121.6	122.9
13	3	124.4	124.9	124.1	124.2
14	3	124.9	124.9	125.8	125.3
15	3	124.6	124.4	124.3	125.0

Figure 14: Relationship Between Lift Thickness and In-place Air Voids, Project 4

The relationship between permeability and in-place air voids is shown in Figure 15. The data was broken down into three relationships: field permeability and lab permeability versus in-place air voids and lab permeability versus air voids for lab compacted samples. The lab permeability results for the lab compacted samples are presented in Table 27. The strongest relationship was between lab permeability and air voids for the lab compacted samples ($R^2 = 0.84$). There was a fair correlation between both the field and lab permeability and air voids on cores (R^2 values of 0.50 and 0.57, respectively). Based on the regression line equations, the field permeability results suggests that the mix became permeable at an in-place air void content between 6 and 7 percent, while the lab permeability results suggest between 9 and 10.

Figure 15: Relationship Between Permeability and In-place Air Voids, Project 4

			Avg Lab				Avg Lab
Sample		T166	Permeability			T166	Permeability
ID	Sublot	VTM, %	(10x-5 cm/s)	Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	3.9	0	17	3	4.8	0
2	1	4.6	0	18	3	5.1	0
3	1	4.0	0	19	3	5.1	0
4	1	4.0	0	20	3	4.9	0
5	1	5.9	18	21	3	6.3	13
6	1	5.4	0	22	3	6.4	75
7	1	8.0	54	23	3	8.4	73
8	1	7.9	38	24	3	13.7	787
9	2	4.2	0				
10	2	3.2	0				
11	2	4.2	0				
12	2	4.4	0				
13	2	6.4	0				
14	2	6.1	10				
15	2	8.4	86				
16	2	8.6	86				

Table 27: Lab Permeability Results for the Lab Compacted Samples, Project 4

5.5 *Project* 5:

Project 5 was an overlay of an existing HMA pavement on a two-lane state highway. The mix consisted of a 9.5 mm NMAS fine-graded blend designed at an N_{design} of 100 gyrations. The optimum binder content for this project was 7.0 percent. The asphalt binder used was a PG 70-22.

Average washed gradation and binder content (solvent extraction) test results for each sublot are presented in Table 28. The average measured binder content from the obtained samples for the overall project was 6.9 percent, 0.1 percent lower than the job mix formula. Sublot 1 was 0.2 percent lower than the JMF while sublots 2 and 3 were equal to the JMF. The average gradation for Project 5 was close to the job mix formula, with the largest difference coming on the 0.3 mm sieve (2.0 percent lower than the JMF).

Gradation		Ov	erall	Sub	olot 1	Sub	olot 2	Sub	olot 3
Sieve Size (mm)	JMF	Avg	% Diff						
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
12.5	100.0	99.7	0.3	99.6	0.4	99.8	0.2	99.8	0.2
9.5	99.0	98.1	0.9	97.8	1.2	97.8	1.2	98.6	0.4
4.75	81.0	81.3	-0.3	80.9	0.1	81.1	-0.1	82.0	-1.0
2.36	60.0	60.6	-0.6	61.1	-1.1	60.3	-0.3	60.4	-0.4
1.18	44.0	45.5	-1.5	45.8	-1.8	45.3	-1.3	45.5	-1.5
0.6	30.0	31.5	-1.5	31.8	-1.8	31.2	-1.2	31.6	-1.6
0.3	19.0	17.0	2.0	17.5	1.5	16.6	2.4	17.0	2.0
0.15	9.0	7.5	1.5	7.9	1.1	7.3	1.7	7.5	1.5
0.075	4.5	3.9	0.6	4.1	0.4	3.7	0.8	3.8	0.7
Asphalt Content	7.00	6.9	0.1	6.8	0.2	7.0	0.0	7.0	0.0

Table 28: Average Gradations and Binder Contents per Sublot, Project 5

Table 29 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and the water absorption values (from AASHTO T166) from each core taken from Project 5. Table 30 presents the average in-place air voids and the

standard deviations for the combined data and for each sublot. Based on the average inplace air void contents shown in Table 30, the CoreReader indicated the lowest in-place air void contents, with AASHTO T166 next to lowest. Dimensional analysis produced the highest in-place air void contents, similar to the previous projects.

		T166 VTM,	CoreLok	CoreReader	Dimensional	Water Abs.,
Sample ID	Sublot	%	VTM, %	VTM, %	VTM, %	%(T166)
1	1	8.2	8.5	5.3	10.3	0.7
2	1	7.9	8.3	5.2	9.7	0.7
3	1	7.5	7.9	5.1	10.0	0.7
4	1	9.1	9.6	6.6	9.9	1.0
5	1	9.1	9.9	6.7	10.3	1.0
6	2	11.7	12.4	9.9	13.6	2.2
7	2	10.4	11.1	10.5	10.6	2.4
8	2	12.0	12.4	9.9	14.8	3.4
9	2	8.9	9.3	6.1	10.7	1.1
10	2	9.4	9.8	7.2	11.6	2.4

Table 29: Core Air Voids and Water Absorption, Project 5

Table 30: Average Core In-place Air Voids and Standard Deviations, Project 5

	T166		Co	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	9.4	1.5	9.9	1.6	7.3	2.1	11.2	1.7	
sublot 1	8.4	0.7	8.9	0.9	5.8	0.8	10.0	0.3	
sublot 2	10.5	1.4	11.0	1.4	8.7	1.9	12.3	1.9	

The in-place air voids for the project averaged 9.4 percent, ranging from a low of 7.5 percent to a high of 12.0 percent, based on AASHTO T166 bulk specific gravity measurements. The average in-place air voids for sublot 1 was 8.4 percent for sublot 2 the average in-place air voids was 10.5 percent.

Lift thickness, field, and lab permeability results are presented in Table 31. The design lift thickness for Project 5 was 31.8 mm. From the results in Table 31, the average

lift thickness for this project was 41.0 mm, 9.2 mm higher than the design lift thickness. The lift thickness ranged from 34.1 mm to 49.8 mm, or from a t/NMAS ratio of 3.6:1 to 5.2:1. PQI density results are presented in Table 32.

The relationship between lift thickness and in-place air voids can be seen in Figure 16. There was a fair relationship between lift thickness and in-place air voids ($R^2 = 0.47$). An ANOVA conducted on the regression indicated that the relationship between lift thickness and in-place air voids was significant (p-value = 0.00). From observation of Figure 16, in-place air voids decreased as lift thickness increased.

Sample	Sublat	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
ID	Subiol	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	49.8	41	23
2	1	45.7	25	21
3	1	44.1	28	28
4	1	42.6	49	63
5	1	42.0	63	78
6	2	37.8	160	339
7	2	38.4	148	182
8	2	35.4	158	261
9	2	34.1	58	66
10	2	40.2	36	120

Table 31: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 5

Table 32: Pavement Quality Indicator In-place Density Results, Project 5

Test	Sublot	Run 1,	Run 2,	Run 3,	Core
Number		pcf	pcf	pcf	Avg., pcf
1	1	129.2	129.1	128.8	129.1
2	1	128.0	128.0	128.4	127.9
3	1	127.9	127.8	128.4	127.8
4	1	127.0	126.4	126.2	126.2
5	1	126.1	125.9	126.1	126.1
6	2	124.4	123.9	124.7	123.7
7	2	124.5	124.4	124.6	124.3
8	2	123.4	123.3	125.0	123.8
9	2	125.1	125.3	125.5	125.9

Figure 17 shows the relationship between in-place air voids and permeability. Figure 17 contains three relationships. These relationships include field permeability and lab permeability results versus in-place air voids and lab permeability results for the lab compacted samples that were produced in NCAT's mobile lab. Lab permeability results for the lab compacted samples are presented in Table 33. The air void contents for the lab compacted samples were higher than expected, due to the reasons discussed earlier.

From the R^2 values from all three plots, there was a very strong relationship between permeability and in-place air voids (R^2 values of 0.89, 0.92. 0.90, for field permeability and cores, lab permeability and cores, and lab permeability and lab samples, respectively). Based on the regression line equations from Figure 17 and a permeability
value of 125×10^{-5} cm/s, the mix became permeable at an in-place air void content between 10 and 11percent.

Figure 17: Relationship Between Permeability and In-place Air Voids, Project 5

		T166	Avg Lab Permeability			T166	Avg Lab Permeability	
Sample	ID Sublot	VTM, %	(10x-5 cm/s)	Sample II) Sublot	VTM, %	(10x-5 cm/s)	
1	1	9.8	105	17	3	10.3	52	
2	1	11.8	191	18	3	9.5	135	
3	1	12.5	244	19	3	12.0	348	
4	1	12.0	222	20	3	13.6	245	
5	1	14.6	605	21	3	14.7	811	
6	1	15.5	605	22	3	15.3	812	
7	1	17.8	1809	23	3	16.3	2675	
8	1	17.2	1797	24	3	17.3	1797	
9	2	10.5	101					
10	2	10.4	109					
11	2	11.5	204					
12	2	11.9	245					
13	2	13.5	486					
14	2	13.7	609					
15	2	14.7	807					

Table 33: Lab Permeability Results for the Lab Compacted Samples, Project 5

5.6 *Project* 6:

Project 6 was the mill and fill placement of 57.2 mm of new HMA over an unbound base of an existing highway. The mix consisted of a 12.5 mm NMAS coarsegraded blend designed at an N_{design} of 75 gyrations, resulting in a design asphalt content of 6.0 percent. The asphalt binder used was an unmodified PG 58-28.

Average asphalt content (solvent extraction) and washed gradation results are presented in Table 34. Results are separated into individual sublots from Project 6. Based on the results in Table 34, the average binder content from the obtained samples for this project was 6.2 percent, 0.2 percent higher than the job mix formula. The average binder content for sublot 1 matched the design binder content, while for sublot 2 the average content was 6.3 percent, 0.3 percent higher than the JMF. From Table 29, the overall gradation was much finer than the job mix formula, with the largest difference coming on the 4.75 mm sieve (6.0 percent above than the JMF). The percent passing the 0.075 mm sieve was 1.5 percent higher than the job mix formula.

Gradation		Overall		Sublot 1		Sublot 2	
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0	100.0	0.0
12.5	91.0	95.6	-4.6	96.0	-5.0	95.2	-4.2
9.5	77.0	82.5	-5.5	83.2	-6.2	81.8	-4.8
4.75	50.0	56.0	-6.0	56.7	-6.7	55.3	-5.3
2.36	34.0	39.0	-5.0	39.5	-5.5	38.5	-4.5
1.18	24.0	27.6	-3.6	28.1	-4.1	27.0	-3.0
0.6	18.0	20.7	-2.7	21.2	-3.2	20.1	-2.1

Table 34: Average Gradations and Binder Contents per Sublot, Project 6

0.3	12.0	15.4	-3.4	15.9	-3.9	14.8	-2.8
0.15		11.3	NA	11.8	NA	10.7	NA
0.075	6.4	7.9	-1.5	8.4	-2.0	7.3	-0.9
Asphalt Content	5.95	6.2	-0.2	6.0	-0.1	6.3	-0.4

Table 35 contains in-place air voids (water displacement, CoreLok, and effective), and absorption values (from AASHTO T166) for each core from Project 6. Table 36 presents the average in-place air voids and standard deviations for the combined data and for each sublot. AASHTO T166 and CoreLok indicated the same average in-place air voids, based on Table 35. CoreReader produced the highest average in-place air void contents for Project 6.

The average construction in-place air voids for this project was 5.6 percent, ranging from a low of 4.4 percent to a high of 6.6 percent, based upon AASHTO T166 bulk specific gravity measurements. For sublot 1 the average in-place air void content was 5.3 percent, and for sublot 2 the average air void content was 5.8 percent. Table 35: Core In-place Air Voids and Water Absorption, Project 6

Sample	Sublot	T166	Corelok	CoreReader	Dimensional	Water Abs.,
ID		VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	5.7	5.3	7.1	7.1	0.6
2	1	5.6	5.3	9.2	7.6	0.6
3	1	4.9	5.1	7.5	7.6	0.4
4	1	5.6	5.9	9.4	10.6	0.4
5	1	4.9	4.9	7.9	7.6	0.4
6	2	5.8	5.8	8.1	8.4	1.1
7	2	6.4	6.1	8.9	8.0	1.7
8	2	4.4	4.2	5.4	6.1	0.4
9	2	5.8	5.2	10.4	9.6	0.8
10	2	6.6	7.8	9.4	8.8	1.0

Table 36: Average Core In-place Air Voids and Standard Deviations, Project 6

	T166		CoreLok		CoreReader		Dimensional	
avg	std dev	avg	std dev	avg	std dev	avg	std dev	

all data	5.6	0.7	5.6	1.0	8.3	1.4	8.1	1.3
sublot 1	5.3	0.4	5.3	0.4	8.2	1.0	8.1	1.4
sublot 2	5.8	0.9	5.8	1.3	8.4	1.9	8.2	1.3

Lift thickness, field, and lab permeability results for Project 6 are presented in Table 37. As mentioned before, the design lift thickness for this project was 57.2 mm. From the results in Table 32, the average lift thickness was 50.3 mm, 6.9 mm below the target value. The lift thickness ranged from 47.0 to 54.5 mm, or from a t/NMAS ratio of 3.8:1 to 4.4:1. PQI density results are presented in Table 38.

The relationship between lift thickness and in-place air voids can be seen in Figure 18. From the graph, there is no correlation between the two properties ($R^2 = 0.06$). An ANOVA conducted on the regression confirmed that the relationship between lift thickness and in-place density was not significant (p-value = 0.499). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design. Table 37: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 6

	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	54.5	114	21
2	47.3	155	26
3	53.3	40	10
4	47.6	30	9
5	54.1	114	15
6	49.0	206	64
7	47.0	427	161
8	48.0	23	7
9	52.8	63	28
10	49.8	290	83

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	133.5	131.1	130.1	131.6
2	1	136.8	133.2	126.9	132.3
3	1	135.1	136.2	136.0	135.8
4	1	132.5	133.6	134.1	133.4
5	1	135.0	132.7	134.3	134.0
6	2	134.0	133.5	133.1	133.5
7	2	128.4	134.2	133.3	132.0
8	2	134.2	134.7	134.3	134.4
9	2	134.3	134.6	135.3	134.7
10	2	131.4	127.2	132.3	130.3

.

Table 38: Pavement Quality Indicator In-place Density Results, Project 6

Figure 18: Relationship Between Lift Thickness and In-place Air Voids, Project 6

The relationship between permeability and in-place air voids for Project 6 are shown in Figure 19. In Figure 19, three relationships were produced. They include field permeability and lab permeability results versus in-place air voids and lab permeability results for the lab compacted samples. The lab permeability results for the lab samples are presented in Table 39. Based on Figure 19, the R^2 value for the field permeability results versus in-place air voids was 0.58, which is a fair relationship. There is a stronger relationship between lab permeability and in-place air voids for both cores and the lab compacted samples (R^2 values of 0.71 and 0.97, respectively). From the regression line equations and a permeability value of 125×10^{-5} cm/s, the field permeability results suggest that the mix became permeable at an in-place air void content between 5.5 and 6 percent. The lab permeability test results suggest an in-place air void content between 6.5 and 8.0 percent.

Figure 19: Relationship Between In-place Air Voids and Permeability, Project 6

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	2.4	0
2	1	2.1	0
2	1	2.1	0
3	1	6.5	55
4	1	5.9	24
5	1	8.4	174
6	1	8.1	138
7	1	10	400
8	1	9.6	307
9	2	7.1	34
10	2	6.5	0
11	2	10	400
12	2	9.6	308
13	2	11.4	NA
14	2	12.5	1487
15	2	13.1	223
16	2	13.3	NA

Table 39: Lab Permeability Results for Lab Compacted Samples, Project 6

NA = No Data Available

5.7 *Project* 7:

Project 7 was the placement of new HMA on an existing highway. The mix consisted of a 12.5 mm NMAS fine-graded blend designed at an N_{design} of 75 gyrations. Optimum binder content for this project was 5.7 percent. The asphalt binder used was a PG 64-28.

Average measured binder content and washed gradation test results are shown in Table 40. Results are separated into the two sublots tested. The average binder content from the obtained samples for Project 7 was 5.6 percent, 0.1 percent lower than the target value. For sublot 1, the average binder content matched the target binder content, and sublot 2 was 0.2 percent low.

No comparison for gradation could be made because the job mix formula was not obtained for this project. But from the average of the two sublots, the gradation remained consistent throughout the day.

Gradation				
Sieve Size (mm)	JMF	Avg	Sublot 1	Sublot 2
37.50	NA	100.0	100.0	100.0
25.0	NA	100.0	100.0	100.0
19	NA	100.0	100.0	100.0
12.5	NA	99.4	98.9	99.8
9.5	NA	91.0	89.7	92.3
4.75	NA	66.7	67.1	66.2
2.36	NA	52.4	53.5	51.3
1.18	NA	40.6	41.6	39.6
0.6	NA	30.4	31.2	29.6
0.3	NA	20.9	21.3	20.4
0.15	NA	12.1	12.2	11.9
0.075	NA	6.4	6.4	6.5
Asphalt Content	5.7	5.6	5.7	5.5

Table 40: Average Gradation and Binder Content per Sublot, Project 7

In-place air voids for cores taken from Project 7 are shown in Table 41. The average in-place air voids and standard deviations for cores are presented in Table 42. Average in-place air voids were 5.6 percent, ranging from 3.1 to 8.5 percent, based on AASHTO T166. From Table 41, sublot 1 averaged 4.9 percent and sublot 2 averaged 6.3 percent. From observation of Table 41, AASHTO T166 and the CoreLok device produced very similar in-place air void values, with the CoreLok device values slightly higher.

Sample	Sublot	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID		VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	4.4	4.1	6.6	7.2	0.3
2	1	3.7	3.5	5.8	6.1	0.2
3	1	3.1	2.9	4.3	5.0	1.1
4	1	4.6	4.2	6.3	6.1	1.4
5	1	8.5	8.8	7.7	10.9	1.0
6	2	7.8	8.5	8.1	10.5	0.4
7	2	6.8	8.3	9.0	10.0	0.8
8	2	5.5	6.4	7.8	8.1	0.4
9	2	5.4	6.0	7.5	9.6	0.5
10	2	6.0	6.2	8.4	9.3	0.4

Table 41: Core In-place Air Voids and Water Absorption, Project 7

Table 42: Average In-place Air Voids and Standard Deviations, Project 7

	T166		CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev
all data	5.6	1.7	5.9	2.2	7.2	1.4	8.3	2.1
sublot 1	4.9	2.1	4.7	2.4	6.1	1.2	7.1	2.3
sublot 2	6.3	1.0	7.1	1.2	8.2	0.6	9.5	0.9

Lift thickness, field, and lab permeability results for Project 7 are presented in Table 43. A design lift thickness of 50.8mm was used for Project 7. The average lift thickness was 40.6 mm, 10.2 mm lower than the target value. Lift thickness ranged from about 25.5 to 51.5 mm, or from a t/NMAS ratio of 2.7:1 to 5.4:1. PQI density results for Project 7 are presented in Table 44.

The relationship between lift thickness and in-place air voids is shown in Figure 20, and produced an R^2 value of 0.29. An ANOVA conducted on the regression showed that the relationship between lift thickness and in-place air voids was not significant (p-value = 0.133). The thickness only changed due to variation in the thickness caused by a

number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	38.7	0	0
2	41.9	1	0
3	36.1	12	0
4	50.5	1	0
5	25.5	40	28
6	34.6	24	12
7	46.7	12	15
8	37.0	0	0
9	43.7	3	0
10	51.5	10	11

Table 43: Average Lift Thickness, Field, and Lab Permeability for Cores, Project 7

Table 44: Pavement Quality Indicator In-place Density Results, Project 7

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	126.8	127.3	126.7	126.7
2	1	125.1	125.3	126.2	125.6
3	1	126.3	126.9	126.9	126.9
4	1	126.5	125.8	126.4	126.4
5	1	123.9	124.1	124.4	123.9
6	2	124.4	124.3	123.8	124.2
7	2	124.7	124.4	124.8	124.8
8	2	122.8	120.0	123.2	122.8
9	2	124.3	124.6	124.6	123.8
10	2	123.6	124.2	120.4	123.5

Figure 20: Relationship Between Lift Thickness and In-place Air Voids, Project 7

Figure 21 shows the relationship between permeability and in-place air voids. For Figure 21, the three relationships produced were field permeability and lab permeability results versus in-place air voids and lab permeability results for the lab compacted samples from the mobile lab. The results from lab permeability testing on the lab compacted samples are presented in Table 45. Based on the R² values from Figure 21, the field permeability results produced a strong relationship with in-place air voids (R² = 0.97). The lab permeability results produced a fair correlation (0.54 for cores) and a strong correlation (0.93 for lab samples). Based on the regression equations and a permeability value of 125×10^{-5} cm/s, the relationships suggest that the mix became permeable at an in-place air void content between 10 and 12 percent. The permeability values from the lab permeability data for the cores were close to zero and was not included in estimating the air void level at which the mix became permeable.

Figure 21: Relationship Between Permeability and In-place Air Voids, Project 7

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	2.6	0
2	1	3.8	0
3	1	9.3	34
4	1	9.1	36
5	1	10.3	72
6	1	10.0	52
7	1	11.1	154
8	1	12.0	143
9	2	5.6	0
10	2	5.2	0
11	2	10.9	143
12	2	10.6	121
13	2	12.5	191
14	2	12.2	236
15	2	13.6	334
16	2	14.0	400

Table 45: Lab Permeability Results for Lab Compacted Samples, Project 7

5.8 *Project* 8:

Project 8 was the placement of new HMA over a milled Portland Cement Concrete (PCC) pavement. The mix consisted of a 19.0 mm NMAS coarse-graded blend designed at an N_{design} of 100 gyrations. Optimum binder content for the project was 5.3 percent. The asphalt binder was a PG 64-22.

Average binder content (solvent extraction) and washed gradation test results are presented in Table 46. The average measured binder content from the obtained samples was 4.2 percent; over 1.0 percent lower than the job mix formula. Both sublots averaged 4.2 percent. For gradation, the average for the project was coarser than the JMF, with the two largest differences coming on the 9.5 and 4.75 mm sieves (10.4 and 11.5 lower than the target values, respectively).

Gradation		Ov	erall	Sut	olot 1	Sut	olot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	95.0	93.0	2.0	92.4	2.6	93.6	1.4
12.5	79.8	72.8	7.0	71.9	7.9	73.7	6.1
9.5	72.4	62.0	10.4	61.0	11.4	63.1	9.3
4.75	48.4	36.9	11.5	36.6	11.8	37.2	11.2
2.36	29.9	22.1	7.8	22.0	7.9	22.2	7.7
1.18	17.7	14.8	2.9	14.7	3.0	15.0	2.7
0.6	10.6	10.2	0.4	10.1	0.5	10.4	0.2
0.3	6.2	7.2	-1.0	7.0	-0.8	7.3	-1.1
0.15	4.6	5.2	-0.6	5.1	-0.5	5.2	-0.6
0.075	3.0	3.7	-0.7	3.7	-0.7	3.8	-0.8
Asphalt Content	5.3	4.2	1.1	4.2	1.1	4.2	1.1

Table 46: Average Gradations and Binder Contents per Sublot, Project 8

Table 47 contains in-place air voids and water absorption values (from AASHTO T166) for each core from Project 8. Table 48 presents average in-place air voids and

standard deviations for cores from Project 8. On average, AASHTO T166 produced the lowest values, and the CoreReader produced the highest in-place air voids.

Sample	Sublot	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID		VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	10.8	11.4	14.4	13.7	2.1
2	1	10.0	11.0	12.8	12.4	1.0
3	1	8.7	9.2	9.6	9.8	0.4
4	1	8.2	9.1	10.6	10.8	0.9
5	1	9.3	9.3	10.3	8.9	0.8
6	2	9.7	10.2	12.1	11.0	0.7
7	2	10.9	12.3	13.6	13.1	2.0
8	2	10.5	11.2	11.8	11.1	0.9
9	2	9.3	10.3	13.7	15.0	1.1
10	2	7.3	7.9	8.9	9.2	0.5

Table 47: Core In-place Air Voids and Water Absorption, Project 8

Table 48: Average Core In-place Air Voids and Standard Deviations, Project 8

	T166		Co	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	9.5	1.2	10.2	1.3	11.8	1.9	11.5	2.0	
sublot 1	9.4	1.0	10.0	1.1	11.5	2.0	11.1	1.9	
sublot 2	9.5	1.4	10.4	1.6	12.0	1.9	11.9	2.2	

For Project 8, the average construction in-place air void content was 9.5 percent, ranging from 7.3 to 10.9 percent, based on AASHTO T166 bulk specific gravity measurements. The average air void content for sublot 1 was 9.4 percent, and for sublot 2 the average air void content was 9.5 percent.

Lift thickness, field, and lab permeability results for Project 8 are presented in Table 49. As previously stated, the design thickness was 50.8 mm. From Table 49, the average thickness was 58.9 mm, 8.1 mm above the target value. Thickness ranged from 45.4 to 74.0 mm, or from a t/NMAS ratio of 2.4:1 to 3.9:1. PQI density results are presented in Table 50.

The relationship between lift thickness and in-place air voids can be seen in Figure 22, which produced an R^2 value of 0.21. An ANOVA conducted on the regression showed that the relationship between lift thickness and in-place air voids was not significant (p-value = 0.185). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	61.6	457	341
2	74.0	415	221
3	68.0	41	0
4	55.2	127	31
5	56.8	206	51
6	58.1	129	53
7	60.1	921	233
8	61.9	207	35
9	45.4	183	91
10	47.8	24	17

Table 49: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 8

Table 50: Pavement Quality Indicator In-place Density Results, Project 8

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	127.7	126.0	128.1	127.2
2	1	121.0	126.0	127.3	126.4
3	1	128.0	126.0	126.2	128.2
4	1	126.8	127.8	130.7	129.8
5	1	127.7	127.5	127.9	127.8
6	2	125.4	125.4	125.7	126.9
7	2	126.4	126.2	126.5	126.6
8	2	126.3	127.6	127.2	127.1
9	2	127.3	128.0	130.1	129.0
10	2	130.1	131.1	128.7	130.2

Figure 22: Relationship Between Lift Thickness and In-place Air Voids, Project 8

The relationship between permeability and in-place air voids is shown in Figure 23. In Figure 23, three relationships are shown. They include field permeability and lab permeability results versus in-place air voids and lab permeability results for the lab compacted samples produced in the mobile lab. Lab permeability results for the lab compacted samples are presented in Table 51. Based on Figure 23, there were strong correlations for both the field permeability results and the lab permeability results for the lab permeability results for the field permeability results and the lab permeability results for the lab permeability results for the field permeability results and the lab permeability results for the lab permeability results for cores was smaller than anticipated (0.59). Based on the regression line equations from Figure 23 and a permeability value of 125×10^{-5} cm/s, the field permeability results suggest the mix became permeable at 9.0 percent in-place air voids. The lab permeability results suggest the mix became permeable between 7 and 11 percent in-place air voids.

Figure 23: Relationship Between Permeability and In-place Air Voids, Project 8

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	4.8	0
2	1	5.4	0
3	1	6.3	10
4	1	6	0
5	1	7	43
6	1	7.1	33
7	1	7.7	322
8	1	8.3	889
9	2	10.2	490
10	2	9.2	884
11	2	11.1	8207
12	2	11.7	5441
13	2	11.5	8116
14	2	12.3	8118
15	2	11.4	16931
16	2	11.4	8454

Table 51: Lab Permeability Results for Lab Compacted Samples, Project 8

5.9 *Project* 9:

Project 9 was the placement of new HMA in the construction of a new state highway. The mix consisted of a 19.0 mm NMAS coarse-graded blend designed at an N_{design} of 100 gyrations, resulting in a design binder content of 4.5 percent. The asphalt binder used was an unmodified PG 64-22.

Average binder content (solvent extraction) and washed gradation test results are presented in Table 52. Results are separated into individual sublots for Project 9. The overall binder content from the obtained samples was 4.5 percent, which matched the design binder content. The binder content for sublot 1 was 4.4 percent, just 0.1 percent lower than the JMF, while sublot 2 also matched the job mix formula. From Table 44, the overall gradation was close to the job mix formula, with the largest difference coming on the larger sieve sizes (12.5, 9.5, and 4.75mm: 6.9, 6.5, and 5.0 percent above than the job mix formula, respectively).

Gradation		Ov	rerall	Sut	olot 1	Sut	olot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	89.5	91.7	-2.2	92.4	-2.9	91.1	-1.6
12.5	74.2	81.1	-6.9	80.6	-6.4	81.7	-7.5
9.5	63.5	70.0	-6.5	68.3	-4.8	71.7	-8.2
4.75	39.0	44.0	-5.0	42.4	-3.4	45.6	-6.6
2.36	21.8	22.9	-1.1	21.4	0.4	24.3	-2.5
1.18	12.9	14.1	-1.2	13.0	-0.1	15.2	-2.3
0.6	8.8	9.9	-1.1	9.0	-0.2	10.8	-2.0
0.3	6.2	7.5	-1.3	6.7	-0.5	8.3	-2.1
0.15	4.4	5.9	-1.5	5.3	-0.9	6.5	-2.1
0.075	3.8	4.5	-0.7	4.1	-0.3	4.9	-1.1
Asphalt Content	4.5	4.5	0.0	4.4	0.1	4.5	0.0

Table 52: Average Gradation and Binder Content per Sublot, Project 9

Table 53 contains construction in-place air voids and water absorption values (AASHTO T166) for cores obtained from Project 9. Table 54 presents the average inplace air voids and standard deviation results for the combined data and for each sublot tested. On average, the water displacement method produced approximately 1.0 percent lower in-place air void contents than the CoreLok device.

	T166 VTM,	CoreLok	CoreReader	Dimensional	Water Abs.,
Sublot	%	VTM, %	VTM, %	VTM, %	%(T166)
1	6.6	7.2	9.7	9.1	0.4
1	5.4	5.9	8.2	8.3	0.4
1	5.9	7.0	9.9	8.4	0.2
1	5.4	6.2	10.3	10.3	0.2
1	5.5	6.0	8.6	9.3	0.2
2	4.0	5.9	9.0	8.2	0.1
2	5.5	6.5	9.4	7.6	0.2
2	7.8	9.6	11.8	10.7	0.8
2	4.9	6.0	8.9	9.2	0.3
2	5.3	5.9	8.2	7.7	0.1

Table 53: Core In-place Air Voids and Water Absorption, Project 9

Table 54: Average Core In-place Air Voids and Standard Deviations, Project 9

	T166		C	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	5.6	1.0	6.6	1.1	9.4	1.1	8.9	1.0	
sublot 1	5.8	0.5	6.5	0.6	9.3	0.9	9.1	0.8	
sublot 2	5.5	1.4	6.8	1.6	9.5	1.4	8.7	1.3	

The average in-place air void content was 5.6 percent, ranging from 4.0 to 7.8 percent (AASHTO T166). Sublot 1 had an average air void content of 5.8 percent, and sublot 2 had a content of 5.5 percent.

Lift thickness, field, and lab permeability results for Project 9 are presented in Table 55. Again, the target lift thickness for this project was 101.6 mm. The average lift thickness was 96.4 mm, 5.2 mm lower then the design thickness. The lift thickness ranged from a low of 89.5 mm to a high of 104.7 mm, or from a t/NMAS ratio of 4.7:1 to 5.5:1. PQI density results for Project 9 are presented in Table 56.

The relationship between lift thickness and in-place air voids can be seen in Figure 24, and produced an R^2 of 0.23. An ANOVA conducted on the regression confirmed that the relationship between lift thickness and in-place air voids was not significant (p-value = 0.163). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	92.8	1620	88
2	97.1	953	0
3	94.3	600	0
4	102.6	404	0
5	94.5	607	24
6	104.1	289	8
7	89.5	267	17
8	95.8	1924	510
9	100.7	406	0
10	92.9	135	0

Table 55: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 9

Table 56: Pavement Quality Indicator In-place Density Results, Project 9

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	128.7	130.2	128.4	130.4
2	1	129.7	131.7	134.2	131.6
3	1	132.2	131.4	131.4	131.2
4	1	131.0	127.9	130.5	129.9
5	1	130.0	128.9	130.6	130.2
6	2	132.3	129.8	133.2	132.9
7	2	131.7	132.2	132.9	131.8
8	2	129.4	129.7	130.3	129.6
9	2	131.9	134.0	130.1	132.1
10	2	133.1	131.9	132.5	132.9

Figure 24: Relationship Between Lift Thickness and In-place Air Voids, Project 9

The relationship between permeability and in-place air voids is shown in Figure 25. Field permeability and lab permeability results versus in-place air voids and the lab permeability results for the lab compacted samples are presented in Figure 25. The lab permeability results for the lab compacted samples are presented in Table 59. From Figure 25, there is a fair correlation between field permeability and in-place air voids ($R^2 = 0.51$). Another fair correlation exists between lab permeability and in-place air voids for the lab compacted samples (0.42). The R^2 value for the lab permeability values on the cores was higher than the other two R^2 values (0.89). Based on the regression equations from Figure 32 and a permeability value of 125×10^{-5} cm/s, the field permeability results indicated the mix became permeable at an in-place air void content between 3 and 4 percent. The lab permeability test results suggest the mix became permeable between 6.5 and 7 percent air voids.

Figure 25: Relationship Between Permeability and In-place Air Voids, Project 9

Sample	Sublot	T166	Avg Lab Permeability
ID		VTM, %	(10x-5 cm/s)
1	1	2.4	55
2	1	3.6	6
3	1	5.4	23
4	1	5.2	57
5	1	6.3	102
6	1	7.1	202
7	1	6.8	334
8	1	6.5	166
9	2	4.4	0
10	2	4.2	47
11	2	6.4	86
12	2	6.4	81
13	2	7.4	231
14	2	7.1	174
15	2	7.5	259
16	2	8.9	101

Table 57: Lab Permeability Results for the Lab Compacted Samples, Project 9

5.10 Project 10:

Project 10 involved the placement of new HMA over a granular base in the construction of a new highway. The mix consisted of a 19.0 mm NMAS coarse-graded blend designed at an N_{design} of 100 gyrations, resulting in a design binder content of 5.6 percent.

The average test results from Project 10 are shown in Table 58. Results include asphalt contents (solvent extraction) and washed gradations of the extracted material. This project contained only one sublot obtained at the asphalt plant, so overall averages are also sublot 1 averages. Based on Table 58, the average measured binder content was 5.7 percent, 0.2 percent higher than the target value. The overall gradation was close to the job mix formula, with the largest difference coming on the 2.36mm sieve (3.1 percent below than the JMF).

Gradation		Ov	erall	Sub	olot 1
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0
12.5	75.0	77.9	-2.9	77.9	-2.9
9.5		60.9		60.9	
4.75		44.8		44.8	
2.36	34.0	30.9	3.1	30.9	3.1
1.18		21.7		21.7	
0.6		16.2		16.2	
0.3	12.0	12.3	-0.3	12.3	-0.3
0.15		9.0		9.0	
0.075	6.9	5.6	1.3	5.6	1.3
Asphalt Content	5.7	5.5	0.2	5.5	0.2

Table 58: Average Gradation and Asphalt Content per Sublot, Project 10

Table 59 contains the in-place air voids and the water absorption values (from AASHTO T166) from the cores obtained. Table 59 also contains the average in-place air

voids and standard deviations for this project. The construction in-place air voids for the project averaged 6.4 percent, ranging from 5.7 to 7.7 percent (AASHTO T166). From observation of Table 59, AASHTO T166 produced the lowest in-place air void contents. The CoreReader produced the highest values.

Sample	Sublot	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID		VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	5.7	6.7	10.1	9.6	1.1
2	1	5.7	6.5	9.2	7.8	0.9
3	1	6.1	8.8	10.9	11.1	1.4
4	1	6.5	7.7	9.8	10.0	1.2
5	1	6.0	9.2	11.9	11.2	1.7
6	2	6.3	7.3	12.3	11.1	0.9
7	2	7.7	9.3	12.8	10.8	1.5
8	2	6.4	7.9	10.4	9.1	1.3
9	2	7.4	8.6	11.3	11.0	1.4
10	2	5.9	7.2	11.8	10.7	1.2
Aver	rage	6.4	7.9	11.1	10.2	1.3
Std I	Dev.	0.7	1.0	1.2	1.1	0.3

Table 59: Core In-place Air Voids and Percent Absorption, Project 10

Lift thickness, field, and lab permeability results are shown in Table 60. The first two field permeability locations could not be found (field permeability testing was performed after all paving was conducted for the day on hand) and were not tested. As previously stated, the design lift thickness for the project was 57.2 mm. Actual lift thickness averaged 70.9 mm, 13.7 mm higher than the target value. Lift thickness ranged from a low of 55.9 mm to a high of 78.5 mm, or a from a t/NMAS ratio of 2.9:1 to 4.1:1. PQI density results for Project 10 are presented in Table 61.

The relationship between lift thickness and in-place air voids is shown in Figure 26. With such a low R^2 value (0.06), there was no correlation between lift thickness and in-place air voids. An ANOVA conducted on the regression confirmed that there was no

relationship between these two properties (p-value = 0.512). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	78.5	NA	308
2	75.9	NA	41
3	61.8	440	601
4	75.7	241	354
5	61.9	354	274
6	75.5	498	72
7	78.5	393	508
8	55.9	580	1190
9	74.8	416	196
10	70.1	282	353

Table 60: Average Lift Thickness, Field, and Lab Permeability for Cores, Project 10

NA = No Data Available

Table 61: Pavement Quality Indicator In-place Density Results, Project 10

Test	Sublot	Run 1	Run 2	Run 3	Avg.
Number					
1	1				
2	1				
3	1	133.4	134.0	133.9	132.8
4	1	133.7	133.4	133.4	131.9
5	1	133.4	130.5	132.6	132.5
6	2	132.2	131.7	132.4	131.4
7	2	132.2	124.7	130.3	130.8
8	2	132.6	130.9	132.2	132.1
9	2	131.6	129.8	126.1	130.8
10	2	133.4	132.2	130.5	132.0

Figure 26: Relationship Between Lift Thickness and In-place Air Voids, Project 10

Figure 27 shows the relationship between permeability and in-place air voids. In Figure 27, there are three relationships: field permeability and lab permeability results versus in-place air voids and lab permeability results versus lab compacted sample air voids. Lab permeability results for the lab samples are found in Table 62. Based on Figure 27, there was no correlation between air voids and permeability for neither the field permeability data nor the lab permeability data for the core (R² values of 0.02 and 0.07, respectively). This may have been caused by a small range of data. For the lab permeability results for the cores, a fair correlation was found (R² = 0.60). From the regression equations from the lab permeability data for the cores and lab samples and a critical permeability value of 125×10^{-5} cm/s, the mix became permeable between 3 and 5 percent air voids. The regression equation for the field permeability was not used because it was basically a flat line.

Figure 27: Relationship Between Permeability and In-place Air Voids, Project 10

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	5.2	931
2	1	7.2	5389
3	1	7.3	1146
4	1	6.7	2029
5	1	7.0	1122
6	1	6.7	909
7	1	11.3	9908
8	1	9.8	3308

Table 62: Lab Permeability Results for Lab Compacted Samples, Project 10

5.11 Project 11:

Project 11 was a mill and fill project on an interstate highway. The mix consisted of a 19.0 mm NMAS coarse-graded blend designed at an N_{design} of 125 gyrations. The optimum binder content for this project was 4.9 percent. The asphalt binder used was a PG 64-34.

Average asphalt content (solvent extraction) and washed gradation results are shown in Table 63. Three sublots were obtained at the plant, but due to traffic constraints, only two field sublots were obtained. The average measured binder content from the obtained samples for the project was 4.6 percent, 0.3 percent lower than the target value. For sublot 1, the average binder content was 0.4 percent low, while both sublots 2 and 3 were 0.2 percent lower than the job mix formula.

Gradation		Ov	erall	Sub	olot 1	Sub	olot 2	Sut	olot 3
Sieve Size (mm)	JMF	Avg	% Diff						
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
19	99.0	98.7	0.3	99.0	0.0	98.5	0.5	98.7	0.3
12.5	87.0	88.1	-1.1	86.8	0.2	88.1	-1.1	89.3	-2.3
9.5	76.0	75.9	0.1	71.6	4.4	77.7	-1.7	78.3	-2.3
4.75	40.0	40.8	-0.8	35.6	4.4	44.0	-4.0	42.7	-2.7
2.36	23.0	24.6	-1.6	21.4	1.6	26.1	-3.1	26.2	-3.2
1.18	18.0	18.9	-0.9	16.1	1.9	20.1	-2.1	20.3	-2.3
0.6	NA	15.3	NA	12.9	NA	16.4	NA	16.6	NA
0.3	10.0	11.3	-1.3	9.3	0.7	12.2	-2.2	12.5	-2.5
0.15	NA	7.2	NA	5.7	NA	7.8	NA	8.2	NA
0.075	4.9	4.5	0.4	3.4	1.5	4.8	0.1	5.3	-0.4
Asphalt Content	4.9	4.6	0.3	4.5	0.4	4.7	0.2	4.7	0.2

Table 63: Average Gradation and Asphalt Content per Sublot, Project 11

The overall gradation for Project 11 was close to the job mix formula. The amount passing the 0.075 mm sieve increased throughout the day's evaluation, from 1.5 percent below the JMF to 0.4 percent above the job mix formula.

Table 54 contains the in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for cores from Project 11. The average values for in-place air voids and standard deviations are shown in Table 55. The construction in-place air voids for the project averaged 7.2 percent. For Sublot 1, the average was 7.9 percent, and was 6.5 percent for sublot 2, based on the water displacement method.

Sample	Sublot	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID		VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	8.4	9.1	10.1	11.9	2.1
2	1	8.0	8.6	10.1	11.4	1.5
3	1	9.4	11.1	11.2	12.7	2.4
4	1	7.0	8.2	9.1	11.1	1.5
5	1	6.8	8.1	10.0	10.6	1.5
6	2	5.8	6.6	7.2	8.9	1.0
7	2	5.7	6.8	6.5	8.4	1.3
8	2	6.5	6.8	8.4	10.1	1.1
9	2	8.2	9.2	9.9	11.7	1.9
10	2	6.3	7.1	7.8	9.7	0.9

Table 64: Core In-place Air Voids and Percent Absorption, Project 11

Table 65: Average Core In-place Air Voids and Standard Deviations, Project 11

	I	T166	C	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	7.2	1.2	8.2	1.4	9.0	1.5	10.7	1.4	
sublot 1	7.9	1.1	9.0	1.2	10.1	0.7	11.5	0.8	
sublot 2	6.5	1.0	7.3	1.1	8.0	1.3	9.8	1.3	

Table 56 contains average lift thickness, field, and lab permeability results for the cores obtained. The design lift thickness for the project was 38.1 mm; the actual average lift thickness was 38.0 mm, very close the target value. The lift thickness ranged from 34.0 mm to 46.7 mm, or from a t/NMAS ratio of 1.8:1 to 2.5:1. PQI density results for Project 11 are presented in Table 57.

The relationship between lift thickness and in-place air voids can be seen in Figure 28. From the plot, there is no correlation between the two properties ($R^2 = 0.08$). An ANOVA conducted for the regression confirmed that the relationship was not significant (p-value = 0.423). The thickness only changed due to variation in the thickness caused by

a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

		Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	Sublot	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	46.7	328	248
2	1	34.4	328	213
3	1	35.5	236	806
4	1	39.7	143	162
5	1	41.3	150	318
6	2	34.9	748	20
7	2	37.9	821	63
8	2	35.4	408	144
9	2	40.5	2467	359
10	2	34.0	2083	81

Table 66: Average Lift Thickness, Field, and Lab Permeability for Cores, Project 11

Table 67: Pavement Quality Indicator In-place Density Results, Project 11

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	117.8	117.1	118.7	117.7
2	1	118.3	120.7	120.4	120.2
3	1	119.2	120.1	119.6	119.1
4	1	120.3	120.5	120.2	120.7
5	1	121.6	122.1	122.6	121.8
6	2	120.2	119.4	120.5	120.3
7	2	120.6	119.4	120.3	119.7
8	2	122.9	122.5	121.8	122.5
9	2	119.6	118.7	119.3	117.9
10	2	118.7	120.1	118.3	118.7

Figure 28: Relationship Between Lift Thickness and In-place Air Voids, Project 11

The relationship between permeability and in-place air voids is shown in Figure 29. For Figure 29, the data is broken down into three relationships: field permeability and lab permeability results versus in-place air voids and lab permeability results versus in-place air voids for the lab compacted samples. The lab permeability results for the lab compacted samples are shown in Table 68. Based on the R² value for the field data (0.06), no relationship seems to exist between field permeability and in-place air voids, but this may be due to a small range in in-place air voids. The relative thinness of the mat may have also contributed to the low R² value as well. A fairly strong R² value was found for both lab permeability on cores (0.75) and for lab permeability for the lab compacted samples (0.65). Based on the regression equations from Figure 29, the lab permeability test results suggest that the mix became permeable at air void contents between 4.5 and 7 percent.

Figure 29: Relationship Between Permeability and In-place Air Voids, Project 11

			Avg Lab			T166	Avg Lab
		T166	Permeability	Sample		VTM,	Permeability
Sample ID	Sublot	: VTM, %	(10x-5 cm/s)	ID	Sublot	%	(10x-5 cm/s)
1	1	9.7	3829	17	3	8.1	519
2	1	7.5	1054	18	3	7.3	389
3	1	7.5	3508	19	3	9.5	1036
4	1	7.2	991	20	3	9.7	1026
5	1	15.5	6965	21	3	11.1	3435
6	1	9.9	6927	22	3	11.8	3444
7	1	9.4	6854	23	3	12.0	5884
8	1	10.8	6922	24	3	12.5	5884
9	2	7.0	173				
10	2	6.5	242				
11	2	10.4	2304				
12	2	10.1	2304				
13	2	11.8	3431				
14	2	11.6	6896				
15	2	12.5	6855				
16	2	12.9	6803				

Table 68: Lab Permeability Results for Lab Compacted Samples, Project 11

5.12 Project 12:

Project 12 was a mill and fill project on an interstate highway. The mix consisted of a 25.0 mm NMAS Stone Matrix Asphalt (SMA) blend designed using 50 blows per face of the Marshall hammer. For research purposes, however, this number was converted to an N_{design} of 50 gyrations, resulting in a design asphalt content of 5.5 percent. The asphalt binder that was used was a PG 76-22.

Average binder content (solvent extraction) and washed gradation test results are presented in Table 58. The results are separated into the three sublots tested during the day on site. The average measured binder content from the obtained samples for the overall project was 5.0 percent, 0.5 percent lower than the job mix formula. Sublot 1 was 0.4 percent lower than the design binder percent, sublot 2 was 0.8 percent lower, and sublot 3 was 0.4 percent lower than the target value.

The overall average was close to the job mix formula, with the largest difference coming on the 1.18 mm sieve (2.8 percent higher than the JMF). The amount passing the 0.075 mm sieve gradually neared the job mix formula value, beginning at 2.5 percent below the JMF at the beginning of the day and moving to 1.1 percent below the JMF by the end of the day.

Gradation		Overall		Sub	olot 1	Sublot 2		Sublot 3	
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	99.7	0.3	99.1	0.9	100.0	0.0	100.0	0.0
19	90.0	86.5	3.5	87.7	2.3	83.0	7.0	88.9	1.1
12.5	74.0	68.5	5.5	70.8	3.2	65.6	8.4	69.1	4.9
9.5	54.0	54.9	-0.9	56.3	-2.3	52.3	1.7	56.0	-2.0
4.75	28.0	29.0	-1.0	29.4	-1.4	27.5	0.5	30.3	-2.3
2.36	21.0	23.2	-2.2	23.4	-2.4	22.3	-1.3	23.9	-2.9
1.18	17.0	19.8	-2.8	19.9	-2.9	19.1	-2.1	20.4	-3.4
0.6	15.0	16.6	-1.6	16.5	-1.5	16.0	-1.0	17.1	-2.1
0.3	11.0	12.5	-1.5	12.3	-1.3	12.2	-1.2	13.1	-2.1
0.15	9.0	8.9	0.1	8.4	0.6	8.6	0.4	9.7	-0.7
0.075	8.0	6.1	1.9	5.5	2.5	5.9	2.1	6.9	1.1
Asphalt Content	5.5	5.0	0.5	5.1	0.4	4.7	0.8	5.1	0.4

Table 69: Average Gradation and Binder Content per Sublot, Project 12

Table 59 contains in-place air voids and water absorption values (from AASHTO T166) for individual cores from Project 12. Table 60 presents the average in-place air voids and standard deviations for the combined data and for each sublot. In-place air voids for the project averaged 5.5 percent, ranging from 3.9 percent to 7.6 percent, based on AASHTO T166 bulk specific gravity measurements. By observation of the data in Table 60, the in-place air voids increased throughout the day (based on AASHTO T166). Also, as with the majority of the previous projects, AASHTO T166 produced the lowest in-place air voids, with dimensional analysis producing the highest in-place air voids.

Sample	Sublot	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID		VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	5.1	6.8	7.7	12.1	1.3
2	1	5.5	6.5	9.2	10.8	1.3
3	1	3.9	6.5	7.1	9.8	0.5
4	1	4.1	5.5	6.1	10.3	0.4
5	1	4.6	5.3	6.2	10.3	0.3
6	2	4.5	6.7	8.4	11.7	1.1
7	2	6.5	6.4	10.3	12.0	1.0
8	2	4.8	5.5	6.9	10.2	0.5
9	2	6.7	8.6	13.2	13.2	1.6
10	2	6.7	8.6	13.6	12.2	1.5
11	3	5.6	6.4	11.0	12.2	0.4
12	3	4.9	5.7	7.4	10.6	0.6
13	3	7.6	9.1	11.6	14.5	1.5
14	3	5.3	7.0	9.0	11.7	0.7
15	3	7.3	9.4	12.4	14.8	3.0

Table 70: Core In-place Air Voids and Absorption Percents, Project 12

Table 71: Average Core In-place Air Voids and Standard Deviations, Project 12

	T166		C	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	5.5	1.2	6.9	1.3	9.3	2.5	11.8	1.5	
sublot 1	4.6	0.7	6.1	0.7	7.3	1.3	10.7	0.9	
sublot 2	5.8	1.1	7.2	1.4	10.5	2.9	11.9	1.1	
sublot 3	6.1	1.2	7.5	1.6	10.3	2.0	12.8	1.8	

Lift thickness, field, and lab permeability results are presented in Table 61. The design lift thickness for the project was 61.0 mm; Project 12 averaged 42.6 mm, 18.4 mm lower than the target value. The lift thickness ranged from 34.1 mm to 48.6 mm, or from a t/NMAS of 1.4:1 to 1.9:1. PQI density results for Project 12 are presented in Table 73.

The relationship between lift thickness and in-place air voids is illustrated in Figure 30. There was no relationship between lift thickness and in-place air voids for this particular project ($R^2 = 0.08$). An ANOVA conducted on the regression confirmed that the relationship was not significant (p-value = 0.300). The thickness only changed due to

variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

		Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	Sublot	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	38.2	322	67
2	1	42.9	113	34
3	1	43.6	157	0
4	1	41.3	9	0
5	1	48.6	35	0
6	2	41.4	99	0
7	2	37.9	187	279
8	2	43.0	191	0
9	2	45.8	585	533
10	2	43.8	1195	327
11	3	46.1	564	24
12	3	41.7	127	0
13	3	34.1	114	139
14	3	47.5	146	0
15	3	43.5	1794	1969

Table 72: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 12

Table 73: Pavement Quality Indicator In-place Density Results, Project 12

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	128.3	127.3	126.1	127.8
2	1	127.3	128.5	125.9	127.1
3	1	126.5	125.7	126.3	126.5
4	1	128.7	128.5	126.3	127.8
5	1	125.4	127.0	126.7	126.5
6	2	118.5	116.5	116.4	117.4
7	2	118.7	119.4	118.1	117.5
8	2	116.8	115.5	116.3	118.9
9	2	114.4	116.4	115.5	116.1
10	2	116.4	117.5	117.8	116.9
11	3	127.9	126.8	124.8	126.7
12	3	127.4	128.4	128.7	128.5
13	3	128.0	128.8	128.8	128.7
14	3	126.8	127.3	128.3	127.9
15	3	124.8	125.8	123.3	125.2

Figure 30: Relationship Between Lift Thickness and In-place Air Voids, Project 12

Figure 31 illustrated the relationship between in-place air voids and permeability. For Figure 31, three relationships were produced. They include field permeability and lab permeability results versus in-place air voids and lab permeability results for the compacted samples from the mobile lab. Table 62 presents the lab permeability results for the lab compacted samples. From Figure 31, reasonable R^2 values were found for both the field permeability results and lab permeability results for the lab compacted samples (0.60 and 0.54, respectively). A low R^2 value was found for the lab permeability data for the cores (0.23). Based on the regression line equations from Figure 31 and a permeability value of 125×10^{-5} cm/s, the field permeability results suggested that the mix became permeable at an in-place air void content between 4 and 5 percent. The lab permeability results suggest that the mix became permeable between 4 and 6 percent.

Figure 31: Relationship Between Permeability and In-place Air Voids, Project 12

		T1((Avg Lab			T1((Avg Lab
		1166	Permeability			1166	Permeability
Sample II) Sublot	VTM, %	(10x-5 cm/s)	Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	1.6	0	17	3	2.0	13
2	1	1.4	0	18	3	2.0	21
3	1	3.9	178	19	3	4.8	86
4	1	3.4	165	20	3	4.3	153
5	1	5.0	119	21	3	5.0	357
6	1	3.6	562	22	3	5.2	79
7	1	5.6	640	23	3	5.4	358
8	1	4.8	746	24	3	6.1	85
9	2	1.9	0				
10	2	1.6	0				
11	2	3.6	102				
12	2	3.6	67				
13	2	4.7	344				
14	2	5.1	320				
15	2	6.0	298				
16	2	7.4	2231				

Table 74: Lab Permeability Results for Lab Compacted Samples, Project 12

5.13 Project 13:

Project 13 involved the placement of new HMA on an existing highway. The mix consisted of a 25.0 mm NMAS fine-graded blend designed at an N_{design} of 100 gyrations, resulting in a design asphalt content of 3.9 percent. The asphalt binder used was a PG 67-22 (unmodified).

Average asphalt content (solvent extraction) and washed gradation test results are shown in Table 75. The measured binder content from the obtained samples for the project was 3.5 percent, 0.4 percent lower than the target value. For sublot 1, the average binder content was 0.1 percent low, while sublot 2 dropped to 0.7 percent below the job mix formula. For gradation, the sieves with the largest deviations were the 9.5 and 4.75 mm sieves (12.1 and 8.4 percent lower than the JMF).

Gradation		Ov	rerall	Sut	olot 1	Sut	olot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	99.0	100.0	-1.0	100.0	-1.0	100.0	-1.0
19	89.0	88.3	0.7	89.1	-0.1	87.5	1.5
12.5	69.0	75.6	-6.6	78.5	-9.5	72.6	-3.6
9.5	61.0	73.1	-12.1	76.7	-15.7	69.4	-8.4
4.75	48.0	56.4	-8.4	60.4	-12.4	52.3	-4.3
2.36	32.0	35.9	-3.9	38.4	-6.4	33.3	-1.3
1.18	23.0	25.8	-2.8	27.4	-4.4	24.1	-1.1
0.6	15.0	17.2	-2.2	18.3	-3.3	16.0	-1.0
0.3	9.0	9.1	-0.1	9.3	-0.3	8.9	0.1
0.15	6.0	5.5	0.6	5.7	0.3	5.2	0.8
0.075	4.6	3.9	0.8	3.9	0.7	3.8	0.8
Asphalt Content	3.9	3.5	0.4	3.8	0.1	3.2	0.7

Table 75: Average Gradation and Asphalt Content per Sublot, Project 13

In-place air voids and water absorption values for Project 13 are presented in Table 76. The results are presented for individual cores; average in-place air voids and standard deviation values for the combined data and for each sublot are presented in Table 77. The in-place air voids for the project was 9.3 percent, ranging from 7.7 to 10.4 percent, based on AASHTO T166 bulk specific gravity measurements. The average in-place air void content for sublot 1 was 9.7 percent, and was 8.5 percent for sublot 2. Sublot 2 contained only two cores due to traffic control constraints.

Sample	Sublot	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID		VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	9.8	10.6	12.0	11.2	1.5
2	1	9.6	10.7	12.9	13.2	1.6
3	1	10.0	11.1	12.3	12.6	1.7
4	1	8.5	9.5	12.4	11.7	2.2
5	1	10.4	10.8	12.3	13.1	1.2
6	2	7.7	8.7	9.8	10.3	1.6
7	2	9.3	9.9	10.4	12.1	1.0

Table 76: Core In-place Air Voids and Absorption Percents, Project 13

Table 77: Average Core In-place Air Voids and Standard Deviations, Project 13

	T166		Co	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	9.3	0.9	10.2	0.9	11.7	1.2	12.0	1.1	
sublot 1	9.7	0.7	10.5	0.6	12.4	0.3	12.4	0.9	
sublot 2	8.5	1.1	9.3	0.8	10.1	0.4	11.2	1.3	

Lift thickness, field, and lab permeability results are presented in Table 78. The design thickness for the project was 69.9 mm. From the results in Table 78, the average lift thickness was 70.0 mm, right at the design thickness. Lift thickness ranged from 52.4 mm to 85.3 mm, or from a t/NMAS ratio of 2.1:1 to 3.4:1. PQI density results for Project 13 are presented in Table 79.

Figure 32 illustrates the relationship between lift thickness and in-place air voids for Project 13. With an R^2 of 0.03, there was no relationship between lift thickness and in-place air voids for this particular project. An ANOVA conducted for the regression

confirmed that the relationship was not significant (p-value of 0.720). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design. Table 78: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 13

		Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	Sublot	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	70.6	1335	248
2	1	52.4	2023	506
3	1	64.4	1607	369
4	1	58.3	661	376
5	1	81.4	409	243
6	2	85.3	512	183
7	2	77.3	766	178

Table 79: Pavement Quality Indicator In-place Density Results, Project 13

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	125.5	127.0	126.2	125.9
2	1	124.6	126.9	125.5	124.6
3	1	126.1	125.8	125.4	126.0
4	1	121.7	123.8	125.2	124.9
5	1	121.0	121.7	121.4	122.6
6	2	127.3	126.7	127.4	126.5
7	2	123.7	124.7	123.8	125.0
8	2	126.6	124.5	125.5	126.9
9	2	124.0	125.0	123.9	124.0
10	2	125.5	128.0	126.3	126.7

Figure 32: Relationship Between Lift Thickness and In-place Air Voids, Project13

The relationship between permeability and in-place air voids is illustrated in Figure 33. Figure 33 contains the relationship for field permeability and lab permeability results versus core in-place air voids and for lab permeability results versus in-place air voids for the lab compacted samples. Table 80 contains the lab permeability results for the lab compacted samples. For the field permeability and lab permeability results for the cores, small R² values were produced (0.13 and 0.08, respectively). This was due to the variability in the permeability values for a small range of in-place air voids. For the lab permeability results on the lab compacted samples, a reasonable R² was found (0.52). From the regression line equations produced from Figure 33 and a permeability value of 125x10⁻⁵ cm/s, the field permeability test results and the lab permeability test results from the cores suggested that the mix became permeable at an in-place air void content between 3 and 4 percent. The lab permeability test results from the lab compacted samples suggested that the mix became permeable at an in-place air void content between 9 and 10 percent.

Figure 33: Relationship Between Permeability and In-place Air Voids, Project 13

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	4.6	0
2	1	4.2	0
3	1	6.2	0
4	1	5.3	0
5	1	5.5	24
6	1	6.5	128
7	1	7.7	66
8	1	7.1	31
9	2	4.8	0
10	2	5.0	0
11	2	6.2	0
12	2	4.8	0
13	2	9.9	61
14	2	10.7	386
15	2	11.4	152
16	2	11.5	170

Table 80: Lab Permeability	y Results for Lab	Compacted Samp	oles, Project 13
-			, ,

5.14 Project 14:

Project 14 involved the placement of new hot mix asphalt on an interstate highway. The mix consisted of a 9.5 mm NMAS Stone Matrix Asphalt (SMA) blend designed using 50 blows per face of a Marshall hammer. For research purposes, however, this number was converted to an N_{design} of 75 gyrations, which resulted in a design asphalt content of 6.7 percent. The asphalt binder used was a PG 76-22.

Average washed gradation and binder content (solvent extraction) test results for each sublot are shown in Table 81. The average measured binder content from the obtained samples for the overall project was 6.4 percent, 0.3 percent below the target value. Both sublots had an average binder content of 6.4 percent. For gradation, the average was very close to the job mix formula, with all sieves having less then two percent deviation from the target values.

Gradation		Ov	verall	Sut	olot 1	Sut	olot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0	100.0	0.0
12.5	100.0	100.0	0.0	100.0	0.0	100.0	0.0
9.5	100.0	100.0	0.0	100.0	0.0	100.0	0.0
4.75	53.0	54.4	-1.4	53.3	-0.3	55.5	-2.5
2.36	25.0	26.2	-1.2	26.1	-1.1	26.3	-1.3
1.18	19.0	20.9	-1.9	20.8	-1.8	20.9	-1.9
0.6	16.0	17.6	-1.6	17.5	-1.5	17.7	-1.7
0.3	14.0	14.3	-0.3	14.2	-0.2	14.3	-0.3
0.15	11.0	11.1	-0.1	10.9	0.1	11.2	-0.2
0.075	9.1	8.5	0.6	8.3	0.8	8.6	0.5
Asphalt Content	6.7	6.4	0.3	6.4	0.3	6.4	0.3

Table 81: Average Gradation and Asphalt Content per Sublot, Project 14

Table 82 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for

individual cores obtained for Project 14. In Table 83, the average in-place air voids and standard deviation values for the combined data and for each sublot are given. The inplace air voids for the project averaged 10.2 percent, ranging from 6.1 to 12.4 percent, based on AASHTO T166 bulk specific gravity measurements. Sublot 1 averaged 8.8 percent, sublot 2 averaged 10.4 percent, and sublot 3 averaged 11.4 percent.

Sample	Sublot	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID		VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	1	5.5	7.8	10.1	13.3	0.3
2	1	11.2	14.4	16.9	20.7	4.1
3	1	11.2	14.4	14.8	22.7	3.4
4	1	7.7	9.0	12.1	14.5	1.2
5	1	8.5	11.4	12.9	16.5	1.7
6	2	10.9	14.8	15.9	17.7	3.4
7	2	7.5	10.4	10.6	15.1	1.3
8	2	11.7	16.3	17.3	16.7	3.7
9	2	9.5	9.6	12.9	16.7	1.7
10	2	12.4	17.8	16.0	19.0	5.4
11	3	10.5	14.8	17.7	19.5	3.7
12	3	9.4	12.3	16.5	18.5	2.0
13	3	11.5	16.1	18.7	21.0	3.2
14	3	15.3	23.5	18.3	19.4	7.0
15	3	10.3	13.1	10.3	17.2	1.9

Table 82: Core In-place Air Voids and Absorption Percents, Project 14

Table 83: Average Core In-place Air Voids and Standard Deviations, Project 14

	T166		Co	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	10.2	2.3	13.7	4.0	14.7	3.0	17.9	2.6	
sublot 1	8.8	2.4	11.4	3.0	13.4	2.6	17.5	4.0	
sublot 2	10.4	1.9	13.8	3.6	14.5	2.7	17.0	1.4	
sublot 3	11.4	2.3	16.0	4.5	16.3	3.5	19.1	1.4	

Lift thickness, field, and lab permeability results on the cores are presented in Table 84. On average, the project had a lift thickness of approximately 26.8 mm, 1.4 mm higher than the design lift thickness. The lift thickness ranged from a low of 20.7 mm to a high of 34.7 mm, or from a t/NMAS from 2.2:1 to 3.7:1. For sublot 3, the field permeability values are the average of two runs due to time constraints. PQI density results for Project 14 are presented in Table 85.

Figure 34 illustrates the relationship between lift thickness and in-place air voids for the project. The regression produced a low R^2 value of 0.20. An ANOVA conducted on the regression showed that the relationship was not significant (p-value of 0.133). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

		Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	Sublot	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	34.7	21	14
2	1	26.8	151	1766
3	1	22.5	137	2488
4	1	30.1	9	183
5	1	28.0	37	425
6	2	24.9	116	2098
7	2	27.0	47	242
8	2	29.2	416	2014
9	2	28.1	227	668
10	2	28.2	1101	4754
11	3	20.7	557	1827
12	3	28.1	140	467
13	3	24.3	174	1564
14	3	27.9	1474	9086
15	3	21.5	225	795

Table 84: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 14

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	124.5	124.6	124.2	124.2
2	1	122.3	121.3	122.2	121.9
3	1	122.8	122.5	122.7	122.4
4	1	124.9	125.4	125.1	124.5
5	1				123.7
6	2	121.3	124.1	123.9	123.2
7	2	125.0	124.7	124.6	124.0
8	2	120.0	122.1	121.0	121.5
9	2	123.3	123.5	121.8	122.2
10	2	119.0	119.7	119.7	119.8
11	3	123.6	123.8		123.5
12	3	123.9	123.8		123.6
13	3	123.3	123.6		123.7
14	3	120.1	120.4		119.8
15	3	122.4	123.7		123.0

Table 85: Pavement Quality Indicator In-place Density Results, Project 14

Figure 34: Relationship Between Lift Thickness and In-place Air Voids, Project 14

Figure 35 illustrate the relationship between permeability and in-place air voids for Project 14. Figure 35 contains three relationships. They include field permeability and

lab permeability results versus in-place air voids and lab permeability results versus air voids for the lab compacted samples. Table 86 contains the lab permeability results for the lab compacted samples. Due to problems encountered during testing, only seven lab compacted samples were produced. All three relationships produced strong R^2 values (0.74 for the field permeability, 0.94 for the lab permeability and cores, and 0.79 for the lab permeability and lab compacted samples). From observation of Figure 35, lab permeability tended to be higher than the field permeability for a given in-place air void level. Based on the regression equations produced in Figure 35 and a permeability value of 125×10^{-5} cm/s, the field permeability test results suggested that the mix became permeable at an in-place air void content between 9 and 10 percent. The lab permeability test results suggest that the mix became permeable between 4.5 and 7.5 percent air voids.

Figure 35: Relationship Between Permeability and In-place Air Voids, Project 14

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	12.4	6017
2	1	10.3	1930
3	1	11.7	2703
4	1	9.6	2689
5	1	10.6	2703
6	1	12.9	5407
7	1	13.9	9141

Table 86: Lab Permeability Results for Lab Compacted Samples, Project 14

5.15 Project 15:

Project 15 was the placement of hot mix asphalt over Portland Cement Concrete (PCC) on an existing highway. The mix consisted of a 19.0 mm NMAS coarse-graded blend designed at an N_{design} level of 100 gyrations, which resulted in a design asphalt content of 4.2 percent. The asphalt binder was a PG 76-22.

Average washed gradation and binder content (solvent extraction) test results for each sublot are presented in Table 87. The overall average binder content from the obtained samples for the project was 4.1 percent, 0.1 percent below the job mix formula. For sublot 1, the average binder content was 0.1 percent above the design content, while sublot 2 was 0.2 percent below the target value. The average gradation for Project 15 deviated from the job mix formula, with the largest difference coming on the 2.36 mm sieve (5.3 percent below the JMF).

Gradation		Ov	rerall	Suł	olot 1	Suł	olot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	99.0	100.0	-1.0	100.0	-1.0	100.0	-1.0
12.5	81.0	82.6	-1.6	86.5	-5.5	78.8	2.2
9.5	72.0	70.4	1.6	75.5	-3.5	65.3	6.7
4.75	53.0	48.4	4.6	52.1	0.9	44.7	8.3
2.36	37.0	31.7	5.3	33.6	3.4	29.8	7.2
1.18	25.0	21.6	3.4	22.7	2.3	20.5	4.5
0.6	15.0	13.9	1.1	14.5	0.5	13.3	1.7
0.3	8.0	8.7	-0.7	9.1	-1.1	8.3	-0.3
0.15	6.0	6.2	-0.2	6.5	-0.5	5.9	0.1
0.075	4.7	4.5	0.3	4.7	0.0	4.2	0.5
Asphalt Content	4.2	4.1	0.1	4.3	-0.1	4.0	0.2

Table 87: Average Gradation and Binder Content per Sublot, Project 15

Table 88 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for individual cores obtained for Project 15. In Table 89, average in-place air voids and standard deviations for the combined data and for each sublot are presented. The construction in-place air voids for the project averaged 11.5 percent, ranging from 8.4 percent to 13.6 percent, based on AASHTO T166 bulk specific gravity measurements. Sublot 1 averaged 11.1 percent and sublot 2 averaged 12.0 percent. Observation of Table 89 shows that all test procedures produced average in-place air voids that were over 10 percent, with AASHTO T166 producing the lowest values.

	T166 VTM,	CoreLok	CoreReader	Dimensional	Water Abs.,
Sample ID	%	VTM, %	VTM, %	VTM, %	%(T166)
1	9.8	10.9	11.9	14.0	2.7
2	14.6	17.2	19.2	20.7	4.9
3	9.0	11.0	12.0	14.0	2.2
4	8.4	9.1	11.3	12.7	1.4
5	13.6	16.6	18.0	19.5	5.5
6	10.7	12.1	13.2	15.5	3.8
7	11.0	14.5	14.3	16.4	3.5
8	12.6	14.4	17.4	17.8	5.2
9	12.4	14.6	15.8	18.2	5.3
10	13.3	15.2	17.4	18.2	5.7

Table 88: Core In-place Air Voids and Percent Absorption, Project 15

Table 89: Average Core In-place Air Voids and Standard Deviations, Project 15

	- -	Г166	Co	oreLok	Core	eReader	Dim	ensional
	avg	std dev	avg	std dev	avg	std dev	avg	std dev
all data	11.5	2.1	13.6	2.7	15.1	2.9	16.7	2.6
sublot 1	11.1	2.8	13.0	3.7	14.5	3.8	16.2	3.6
sublot 2	12.0	1.1	14.2	1.2	15.6	1.9	17.2	1.2

Lift thickness, field, and lab permeability results on cores obtained are presented in Table 90. The design lift thickness for Project 15 was 57.2 mm; actual lift thickness averaged 50.4 mm, 4.8 mm lower than the target value. The thickness ranged from 35.5 mm to 55.3 mm, or from a t/NMAS ratio of 1.9:1 to 2.9:1. From the data in Table 90, the lift thickness increased throughout the course of the day. PQI density results for Project 15 are presented in Table 91.

Figure 36 illustrates the relationship between lift thickness and in-place air voids. Performing a regression on all the data produced an R^2 of 0.08, which suggested that there was no relationship between lift thickness and in-place air voids. An ANOVA conducted on the regression confirmed that the relationship was not significant (p-value = 0.437). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

		Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	Sublot	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	35.5	864	411
2	1	45.6	3965	1872
3	1	50.4	375	324
4	1	49.2	856	171
5	1	54.2	3602	2721
6	2	53.2	1480	761
7	2	52.8	1271	623
8	2	52.2	3388	1513
9	2	55.2	2429	1104
10	2	55.3	4618	1247

Table 90: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 15

Table 91: Pavement Quality Indicator In-place Density Results, Project 15

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	136.4	133.4	129.0	131.8
2	1	125.2	125.0	126.0	126.4
3	1	133.8	133.9	133.7	135.2
4	1	135.3	135.8	136.4	135.0
5	1	128.7	128.5	128.6	128.4
6	2	127.1	129.4	130.0	130.3
7	2	131.1	129.4	130.7	129.3
8	2	127.9	127.9	127.7	128.3
9	2	128.0	128.2	129.2	127.0
10	2	124.8	127.6	126.5	127.2

Figure 36: Relationship Between Lift Thickness and In-place Air Voids, Project 15

Figure 37 illustrates the relationship between permeability and in-place air voids for Project 15. For Figure 37, there are three relationships. They include field permeability and lab permeability results versus in-place air voids and lab permeability results versus in-place air voids for the lab compacted samples. The results for the lab permeability testing on the lab compacted samples are presented in Table 92. Reasonable to strong R^2 value were obtained for all three regressions (field permeability = 0.85, lab permeability on cores = 0.93, lab permeability on lab samples = 0.78). Based on the regression equations from all three regressions, the mix became permeable at an air void content between 5.5 and 7.5 percent.

Figure 37: Relationship Between Permeability and In-place Air Voids, Project 15

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	4.5	0
2	1	4.5	0
3	1	4.7	56
4	1	5.8	133
5	1	6.4	266
6	1	6.8	70
7	1	7.6	153
8	1	8.3	195
9	2	5.9	29
10	2	5.7	20
11	2	8.2	498
12	2	8.4	375
13	2	9.7	1122
14	2	9.9	897
15	2	10.7	1494
16	2	9.8	1504

Table 92: Lab Permeability Results for Lab Compacted Samples

5.16 Project 16:

Project 16 was the placement of new HMA in the construction of a new state highway. The mix consisted of a 12.5 mm NMAS fine-graded blend designed at an N_{design} of 86 gyrations, which resulted in a design asphalt content of 5.8 percent. The asphalt binder used was a PG 67-22 (unmodified).

Average gradation and binder content (solvent extraction) test results are presented in Table 93. The overall average binder content from the obtained samples for the project was 5.5 percent, 0.3 percent below the design binder content. For sublot 1, the average binder content was 0.2 percent low, and for sublot 2 the average binder content was 0.3 percent below the job mix formula. The average gradation was close to the job mix formula, with the majority of the sieves below than the job mix formula. However, all the amounts were less than one percent off from the target values.

Gradation		Ov	rerall	Sut	olot 1	Sut	olot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0	100.0	0.0
12.5	100.0	98.9	1.1	99.0	1.0	98.8	1.2
9.5	91.0	89.8	1.2	89.5	1.5	90.1	0.9
4.75	55.0	56.1	-1.1	55.2	-0.2	57.0	-2.0
2.36	36.0	36.7	-0.7	35.9	0.1	37.5	-1.5
1.18	26.0	26.7	-0.7	26.0	0.0	27.3	-1.3
0.6	20.0	20.4	-0.4	19.8	0.2	21.0	-1.0
0.3	12.0	12.9	-0.9	12.3	-0.3	13.6	-1.6
0.15	7.0	7.8	-0.8	7.1	-0.1	8.4	-1.4
0.075	5.4	5.4	0.0	4.8	0.6	6.1	-0.7
Asphalt Content	5.8	5.5	0.3	5.6	0.2	5.5	0.3

Table 93: Average Gradation and Binder Content per Sublot, Project 16

Table 94 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for

individual cores obtained for Project 16. In Table 95, average in-place air voids and standard deviations for the combined data and for each sublot are given.

	T166 VTM,	CoreLok	CoreReader	Dimensional	Water Abs.,
Sample ID	%	VTM, %	VTM, %	VTM, %	%(T166)
1	6.8	8.9	8.1	11.1	1.4
2	9.0	10.7	10.9	12.0	2.9
3	5.5	7.4	7.0	9.0	1.1
4	11.6	13.5	14.3	16.4	4.2
5	9.3	12.3	11.8	13.2	3.7
6	6.8	7.8	7.4	8.6	1.6
7	9.6	11.4	12.5	13.7	3.5
8	6.1	7.3	7.3	9.3	1.0
9	6.7	8.0	8.3	9.3	1.8
10	8.4	9.3	9.4	11.1	1.3

Table 94: Core In-place Air Voids and Percent Absorption, Project 16

Table 95: Average In-place Air Voids and Standard Deviations, Project 16

	T166		Co	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	8.0	1.9	9.7	2.2	9.7	2.5	11.4	2.5	
sublot 1	8.4	2.4	10.6	2.5	10.4	2.9	12.3	2.7	
sublot 2	7.5	1.4	8.8	1.7	9.0	2.1	10.4	2.1	

The construction in-place air voids for the project averaged 8.0 percent, ranging from 5.5 percent to 11.6 percent, based on AASHTO T166 bulk specific gravity measurements. For sublot 1, the average in-place air void content was 8.4 percent, and was 7.5 percent for sublot 2.

Lift thickness, field, and lab permeability results for cores are presented in Table 96. The design lift thickness for Project 16 was 38.1 mm; the actual thickness averaged 43.8 mm, 5.7 mm higher than the target value. Lift thickness ranged from 38.0 mm to 48.9 mm, or from a t/NMAS ratio of 3.0:1 to 3.9:1. PQI density results for Project 16 are presented in Table 97. The relationship between lift thickness and in-place air voids is illustrated in Figure 38. Analysis of the data indicated little correlation between in-place air voids and lift thickness ($R^2 = 0.16$). An ANOVA conducted on the regression confirmed that the relationship was not significant (p-value = 0.245). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

		Avg Thickness	Avg Field Permeability	Avg Lab Permeability
Sample ID	Sublot	(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	43.6	72	70
2	1	48.9	805	499
3	1	44.5	58	45
4	1	45.7	1712	1048
5	1	44.2	725	372
6	2	38.0	266	189
7	2	45.2	2345	697
8	2	43.8	125	83
9	2	42.8	126	77
10	2	40.8	677	292

Table 96: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 16

Table 97: Pavement Quality Indicator In-place Density Results, Project 16

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	119.2	118.8	118.6	118.9
2	1	117.1	117.9	117.8	117.4
3	1	119.6	119.3	119.4	119.3
4	1	115.6	115.3	114.9	115.2
5	1	118.3	117.9	117.5	116.9
6	2	120.2	120.5	121.3	120.2
7	2	118.0	117.8	118.7	118.1
8	2	120.4	120.5	120.2	120.6
9	2	120.9	121.2	120.4	120.9
10	2	119.3	118.3	118.7	119.3

Figure 38: Relationship Between Lift Thickness and In-place Air Voids, Project 16

Figure 39 illustrates the relationship between permeability and air voids for Project 16. In Figure 39, three relationships are shown. They include field permeability and lab permeability results versus in-place air voids and lab permeability results versus in-place air voids for the lab compacted samples. The results for the lab compacted samples are presented in Table 98. In Figure 39, strong R^2 values were found for all three trendlines (0.87 for field permeability, 0.92 for lab permeability on cores, and 0.94 for lab permeability on lab samples). From observation of Figure 39, lab permeability values for the cores were generally lower than the field permeability and the lab permeability values for the lab compacted samples for a given air void content. This is presented by the regression line equations from Figure 39 and a permeability value of 125×10^{-5} cm/s. The three regression line equations suggested that the mix became permeable between 5 and 7 percent air voids.

Figure 39: Relationship Between Permeability and In-place Air Voids, Project 16

		T166	Avg Lab Permeability
Sample ID	Sublot	VTM, %	(10x-5 cm/s)
1	1	4.2	61
2	1	4.5	99
3	1	6.2	127
4	1	5.8	211
5	1	6.6	288
6	1	7.0	241
7	1	7.2	483
8	1	10.3	1543
9	2	7.3	294
10	2	5.5	103
11	2	10.5	1010
12	2	11.2	3021
13	2	12.9	3343
14	2	12.3	2240
15	2	14.0	3330
16	2	12.4	6642

Table 98: Lab Permeability Results for Lab Compacted Samples, Project 16

5.17 Project 17:

Project 17 was the placement of new HMA in the resurfacing of a county highway. The mix consisted of a 12.5 mm NMAS fine-graded blend designed at an N_{design} of 75 gyrations, which resulted in a design asphalt content of 4.8 percent. The asphalt binder used was a PG 64-22 (unmodified).

Average gradation and binder content (solvent extraction) test results are presented in Table 99. The overall average binder content from the obtained samples for the project was 4.4 percent, 0.4 percent below the design binder content. For sublot 1, the average binder content was 0.4 percent low, and for sublot 2 the average binder content was 0.3 percent below the job mix formula. The average gradation was close to the job mix formula.

Gradation		Ov	erall	Sub	olot 1	Sub	lot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	99.3	0.7	99.6	0.4	98.9	1.1
12.5	94.0	97.2	-3.2	97.9	-3.9	96.5	-2.5
9.5	85.0	88.7	-3.7	89.6	-4.6	87.8	-2.8
4.75	59.0	56.2	2.8	56.5	2.5	55.9	3.1
2.36	44.0	46.0	-2.0	47.0	-3.0	45.0	-1.0
1.18	40.0	39.7	0.3	40.8	-0.8	38.6	1.4
0.6	33.0	30.9	2.1	32.0	1.0	29.7	3.3
0.3	17.0	18.2	-1.2	18.7	-1.7	17.8	-0.8
0.15	6.0	7.4	-1.4	7.3	-1.3	7.5	-1.5
0.075	4.5	3.7	0.8	3.6	0.9	3.7	0.8
Asphalt Content	4.8	4.4	0.4	4.4	0.4	4.5	0.3

Table 99: Average Gradation and Binder Content per Sublot, Project 17

Table 100 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for

individual cores obtained for Project 17. In Table 101, average in-place air voids and standard deviations for the combined data and for each sublot are given.

Sample	T166	Corelok	CoreReader	Dimensional	Water Abs.,
ID	VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	9.1	9.3	10.3	11.0	0.5
2	9.5	10.1	13.6	13.9	0.5
3	10.8	8.1	14.5	15.7	0.7
4	6.8	6.9	7.0	7.9	0.2
5	13.0	13.9	15.2	15.8	0.8
6	8.5	9.2	12.7	11.9	1.2
7	9.9	10.6	13.6	13.5	0.3
8	13.0	13.9	16.5	18.0	1.5
9	11.0	11.8	12.6	17.1	0.6
10	8.2	8.5	10.3	11.2	0.2

Table 100: Core In-place Air Voids and Percent Absorption, Project 17

Table 101: Average In-place Air Voids and Standard Deviations, Project 17

	T166		Co	CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev	
all data	10.0	2.0	10.2	2.4	12.6	2.8	13.6	3.1	
sublot 1	9.8	2.3	9.7	2.7	12.1	3.4	12.9	3.4	
sublot 2	10.1	2.0	10.8	2.2	13.1	2.2	14.3	3.1	

The in-place air voids for the project averaged 10.0 percent, ranging from 6.8 percent to 13.0 percent, based on AASHTO T166 bulk specific gravity measurements. For sublot 1, the average in-place air void content was 9.8 percent, and was 10.1 percent for sublot 2.

Lift thickness, field, and lab permeability results for cores are presented in Table 102. The design lift thickness for Project 17 was 37.5 mm; the actual thickness averaged 43.3 mm, 5.8 mm higher than the target value. Lift thickness ranged from 32.9 mm to 63.5 mm, or from a t/NMAS ratio of 2.6:1 to 5.1:1. PQI density results for Project 17 are presented in Table 103. The relationship between lift thickness and in-place air voids is illustrated in Figure 40. Analysis of the data indicated little correlation between in-place air voids and lift thickness ($R^2 = 0.17$). An ANOVA conducted on the regression confirmed that the relationship was not significant (p-value = 0.059). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

Sample	Sublot	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
ID		(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	43.9	14	0
2	1	41.9	15	0
3	1	32.9	42	405
4	1	39.7	5	14
5	1	63.5	163	2433
6	2	54.8	26	1344
7	2	36.7	22	1432
8	2	46.6	149	724
9	2	40.3	50	967
10	2	33.0	28	540

Table 102: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 17

Table 103: Pavement Quality Indicator In-place Density Results, Project 17

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	122.5	122.7	121.4	121.7
2	1	121.1	121.2	120.4	120.7
3	1	120.9	121.1	121.4	120.9
4	1	122.8	122.9	122.4	122.6
5	1	118.2	117.0	119.6	118.5
6	2	118.2	120.0	117.4	119.8
7	2	121.2	120.3	120.8	120.8
8	2	117.9	118.7	118.4	118.1
9	2	120.0	119.6	119.7	119.5
10	2	120.7	120.6	121.3	120.7

Figure 40: Relationship Between Lift Thickness and In-place Air Voids, Project 17

Figure 41 illustrates the relationship between permeability and in-place air voids for Project 17. In Figure 41, three relationships are presented. They include field permeability and lab permeability results versus in-place air voids and lab permeability results versus in-place air voids for the lab compacted samples. The results for the lab compacted samples are presented in Table 104. In Figure 41, a strong R^2 value was found for the field permeability data (0.87). A reasonable correlation was found for the lab permeability data for the cores (0.57). A low R^2 (0.10) was found for the lab permeability data for the lab compacted samples due to the permeability values being close to zero for the range of air voids From observation of Figure 41, lab permeability values for the cores were generally higher than the field permeability and the lab permeability values for the lab compacted samples for a given air void content. This is presented by the regression line equations from Figure 41 and a permeability value of 125×10^{-5} cm/s. The field permeability results suggested that the mix became permeable at an in-place air void content between 13 and 14 percent. Lab permeability test results for the cores suggested that the mix became permeable between 7 and 8 percent air voids. The lab permeability data for the lab samples was not used due to the regression line being flat.

Figure 41: Relationship Between Permeability and In-place Air Voids, Project 17

Sample ID	Sublot	T166 VTM,	Avg Lab Permeability
		%	(10x-5 cm/s)
1	1	4.1	0
2	1	4.2	0
3	1	7.4	12
4	1	8.9	4
5	1	8.5	14
6	1	8.2	7
7	1	11.2	25
8	1	11.3	14
9	2	4.8	0
10	2	4.3	0
11	2	4.7	0
12	2	4.7	0
13	2	8.8	2
14	2	6.2	0
15	2	8.6	17
16	2	8.5	6

Table 104: Lab Permeability Results for Lab Compacted Samples, Project 17

5.18 Project 18:

Project 18 was the placement of new HMA in the resurfacing of a county highway. The mix consisted of a 12.5 mm NMAS coarse-graded blend designed at an N_{design} of 75 gyrations, which resulted in a design asphalt content of 5.1 percent. The asphalt binder used was a PG 67-22.

Average gradation and binder content (solvent extraction) test results are presented in Table 105. The overall average measured binder content from the obtained samples for this project was 4.7 percent, 0.4 percent below the design binder content. For sublot 1, the average binder content was 0.5 percent low, and for sublot 2 the average binder content was 0.2 percent below the job mix formula. The average gradation was close to the job mix formula, with the majority of the sieves below than the job mix formula.

Gradation		Ov	erall	Sub	olot 1	Sub	olot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0	100.0	0.0
12.5	98.0	98.4	-0.4	98.7	-0.7	98.1	-0.1
9.5	85.0	85.4	-0.4	85.4	-0.4	85.5	-0.5
4.75	55.0	54.9	0.1	55.3	-0.3	54.4	0.6
2.36	37.0	35.6	1.5	36.4	0.6	34.7	2.3
1.18		24.2		24.9		23.4	
0.6		17.4		18.0		16.8	
0.3	14.0	12.7	1.4	13.0	1.0	12.3	1.7
0.15		8.8		8.9		8.7	
0.075	6.5	6.0	0.5	5.9	0.6	6.0	0.5
Asphalt Content	5.1	4.7	0.4	4.6	0.5	4.9	0.2

Table 105: Average Gradation and Binder Content per Sublot, Project 18

Table 106 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for individual cores obtained for Project 18. In Table 107, average in-place air voids and standard deviations for the combined data and for each sublot are given.

Sample	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID	VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	7.5	7.8	7.6	10.0	0.4
2	7.3	7.6	10.0	12.5	0.5
3	9.7	10.6	13.2	14.1	2.1
4	8.8	9.2	10.8	11.4	1.0
5	9.5	10.1	11.6	11.1	0.4
6	11.5	11.9	13.8	14.4	0.7
7	9.0	9.6	12.5	13.5	0.6
8	7.5	7.8	11.2	9.8	0.5
9	8.2	8.5	10.0	9.6	0.5
10	7.6	7.9	11.4	10.1	0.3

Table 106: Core In-place Air Voids and Percent Absorption, Project 18

	T166		CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev
all data	8.7	1.3	9.1	1.4	11.2	1.8	11.7	1.9
sublot 1	8.6	1.1	9.1	1.3	10.6	2.1	11.8	1.6
sublot 2	8.8	1.6	9.1	1.7	11.8	1.4	11.5	2.3

Table 107: Average In-place Air Voids and Standard Deviations, Project 18

The in-place air voids for the project averaged 8.7 percent, ranging from 7.5 percent to 11.5 percent, based on AASHTO T166 bulk specific gravity measurements. For sublot 1, the average in-place air void content was 8.6 percent, and was 8.8 percent for sublot 2.

Lift thickness, field, and lab permeability results for cores are presented in Table 108. The design lift thickness for Project 18 was 38.1 mm; the actual thickness averaged 44.5 mm, 6.4 mm higher than the target value. Lift thickness ranged from 37.9 mm to 56.7 mm, or from a t/NMAS ratio of 3.0:1 to 4.5:1. PQI density results for Project 18 are presented in Table 109.

The relationship between lift thickness and in-place air voids is illustrated in Figure 42. Analysis of the data indicated little correlation between in-place air voids and lift thickness ($R^2 = 0.05$). An ANOVA conducted on the regression confirmed that the relationship was not significant (p-value = 0.541). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

Sample	Sublot	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
ID		(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	39.9	59	396
2	1	46.1	53	406
3	1	41.2	309	402
4	1	42.5	234	1974
5	1	56.7	105	687
6	2	45.9	244	3289
7	2	38.9	190	1551
8	2	37.9	39	405
9	2	48.3	43	773
10	2	47.5	76	391

Table 108: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 18

Table 109: Pavement Quality Indicator In-place Density Results, Project 18

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	125.5	124.8	125.1	125.2
2	1	123.4	124.6	124.0	124.1
3	1	122.7	123.2	123.2	122.6
4	1	121.9	121.5	123.9	123.3
5	1	124.3	123.8	124.1	123.1
6	2	122.5	121.8	121.9	121.8
7	2	122.1	121.7	121.4	121.7
8	2	123.9	122.3	122.4	122.4
9	2	123.4	124.0	123.9	123.5
10	2	122.2	122.7	123.8	123.8

Figure 42: Relationship Between Lift Thickness and In-place Air Voids, Project 18

Figure 43 illustrates the relationship between permeability and in-place air voids for Project 18. In Figure 43, three relationships are presented. They include field permeability and lab permeability results versus in-place air voids and lab permeability results versus in-place air voids for the lab compacted samples. The results for the lab compacted samples are presented in Table 110. In Figure 43, reasonable R^2 values were found for all three trendlines (0.64 for field permeability, 0.52 for lab permeability on cores, and 0.77 for lab permeability on lab samples). From observation of Figure 43, lab permeability values for the cores were generally lower than the field permeability and higher than the lab permeability values for the lab compacted samples for a given air void content. This is presented by the regression line equations from Figure 43 and a permeability value of 125×10^{-5} cm/s. The field permeability results suggested that the mix became permeable at an in-place air void content between 8 and 9 percent. Lab permeability test results suggest the mix became permeable between 4 and 6 percent air voids.

Figure 43: Relationship Between Permeability and In-place Air Voids, Project 18

Sample	Sublot	T166	Avg Lab Permeability
ID		VTM, %	(10x-5 cm/s)
1	1	5.7	2018
2	1	6.3	474
3	1	6.3	1215
4	1	6.8	1132
5	1	9.2	7672
6	1	8.5	6819
7	1	10.6	7978
8	1	10.3	10229
9	2	7.5	3580
10	2	7.2	836
11	2	9.7	3799
12	2	8.7	4938
13	2	10.7	13167
14	2	9.7	7182
15	2	9.6	8343
16	2	11.1	25029

5.19 Project 19:

Project 19 was the placement of new HMA in the resurfacing of a county highway. The mix consisted of a 9.5 mm NMAS fine-graded blend designed at an N_{design} of 75 gyrations, which resulted in a design asphalt content of 5.5 percent. The asphalt binder used was a PG 67-22.

Average gradation and binder content (solvent extraction) test results are presented in Table 111. The overall average measured binder content from the obtained samples for the project was 5.4 percent, just 0.1 percent below the design binder content. For sublot 1, the average binder content was the design content, and for sublot 2 the average binder content was 0.2 percent below the job mix formula. The average gradation was close to the job mix formula, with the majority of the sieves above than the job mix formula.

Gradation		Overall		Sublot 1		Sublot 2	
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	100.0	0.0	100.0	0.0	100.0	0.0
12.5	100.0	100.0	0.0	100.0	0.0	100.0	0.0
9.5	98.0	98.7	-0.7	98.8	-0.8	98.7	-0.7
4.75	70.0	74.1	-4.1	74.5	-4.5	73.6	-3.6
2.36	46.0	49.6	-3.6	48.9	-2.9	50.3	-4.3
1.18		34.8		34.4		35.2	
0.6		25.1		24.9		25.3	
0.3	15.0	17.7	-2.7	17.6	-2.6	17.8	-2.8
0.15		10.3		10.2		10.3	
0.075	6.2	5.7	0.5	5.7	0.5	5.7	0.5
Asphalt Content	5.5	5.4	0.1	5.5	0.0	5.3	0.2

Table 111: Average Gradation and Binder Content per Sublot, Project 19

Table 112 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for

individual cores obtained for Project 19. In Table 113, average in-place air voids and standard deviations for the combined data and for each sublot are given.

Sample	T166	Corelok	CoreReader	Dimensional	Water Abs.,
ID	VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	12.4	14.1	11.9	15.2	0.4
2	9.1	9.8	11.6	13.1	0.2
3	9.7	9.9	10.7	12.0	0.3
4	8.5	9.0	8.4	10.3	0.3
5	10.4	10.6	10.2	12.0	0.4
6	7.7	8.1	8.3	9.2	0.2
7	10.1	10.2	9.8	12.1	0.4
8	6.2	6.3	7.2	7.6	0.2
9	5.8	5.8	7.0	7.2	0.2
10	5.9	6.2	8.3	8.7	0.2

Table 112: Core In-place Air Voids and Percent Absorption, Project 19

Table 113: Average In-place Air Voids and Standard Deviations, Project 19

	T166		CoreLok		CoreReader		Dimensional	
	avg	std dev	avg	std dev	avg	std dev	avg	std dev
all data	8.6	2.2	9.0	2.5	9.3	1.8	10.7	2.6
sublot 1	10.0	1.5	10.7	2.0	10.6	1.4	12.5	1.8
sublot 2	7.1	1.8	7.3	1.8	8.1	1.1	9.0	1.9

The in-place air voids for the project averaged 8.0 percent, ranging from 5.5 percent to 11.6 percent, based on AASHTO T166 bulk specific gravity measurements. For sublot 1, the average in-place air void content was 8.4 percent, and was 7.5 percent for sublot 2.

Lift thickness, field, and lab permeability results for cores are presented in Table 114. The design lift thickness for Project 19 was 31.8 mm; the actual thickness averaged 41.5 mm, 9.7 mm higher than the target value. Lift thickness ranged from 31.7 mm to 51.5 mm, or from a t/NMAS ratio of 3.3:1 to 5.4:1. PQI density results for Project 19 are presented in Table 115.
The relationship between lift thickness and in-place air voids is illustrated in Figure 44. Analysis of the data indicated a fair correlation between in-place air voids and lift thickness ($R^2 = 0.52$). An ANOVA conducted on the regression confirmed that the relationship was significant for this particular project (p-value = 0.025).

Sample	Sublot	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
ID		(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	31.7	113	756
2	1	38.2	34	781
3	1	50.9	44	868
4	1	34.7	40	360
5	1	35.4	95	438
6	2	41.8	29	456
7	2	37.6	137	310
8	2	48.3	6	957
9	2	51.5	5	0
10	2	44.4	7	0

Table 114: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 19

Table 115: Pavement Quality Indicator In-place Density Results, Project 19

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	121.5	124.5	124.4	123.5
2	1	125.1	125.1	125.6	125.3
3	1	124.3	124.8	124.2	124.4
4	1	125.4	125.3	124.9	125.2
5	1	123.3	124.2	125.1	124.2
6	2	123.9	124.7	124.3	124.3
7	2	121.3	122.1	120.1	121.2
8	2	125.8	126.6	126.1	126.2
9	2	126.5	126.7	126.2	126.5
10	2	126.4	125.7	125.1	125.7

Figure 44: Relationship Between Lift Thickness and In-place Air Voids, Project 19

Figure 45 illustrates the relationship between permeability and in-place air voids for Project 19. In Figure 45, three relationships are presented. They include field permeability and lab permeability results versus in-place air voids and lab permeability results versus in-place air voids for the lab compacted samples. The results for the lab compacted samples are presented in Table 116. In Figure 45, strong R² values were found for two of the three trendlines (0.92 for field permeability and 0.93 for lab permeability on lab samples). A low correlation was found for the lab permeability data for the cores (R² = 0.03) due to the small range in permeability values for the range of air voids. Based on the regression line equations and a critical permeability value of 125×10^{-5} cm/s, the field permeability results suggested that the mix became permeable at an in-place air void content between 11 and 12 percent. Lab permeability test results for the lab samples suggested that the mix became permeable between 5 and 6 percent air voids.

Figure 45: Relationship Between Permeability and In-place Air Voids, Project 19

Sample	Sublot	T166	Avg Lab Permeability
ID		VTM, %	(10x-5 cm/s)
1	1	9.4	2688
2	1	8.6	1837
3	1	8.1	1632
4	1	8.8	2086
5	1	10.8	6257
6	1	10.4	4693
7	1	13.6	15409
8	1	13.4	12515
9	2	7.4	637
10	2	6.9	233
11	2	8.9	1666
12	2	8.9	1809
13	2	11.0	5276
14	2	10.4	3518
15	2	13.0	7915
16	2	12.5	7035

Table 116: Lab Permeability Results for Lab Compacted Samples, Project 19

5.20 Project 20:

Project 20 was the placement of new HMA in the resurfacing of a United States highway. The mix consisted of a 12.5 mm NMAS fine-graded blend designed at an N_{design} of 80 gyrations, which resulted in a design asphalt content of 5.0 percent. The asphalt binder used was a PG 64-22 (unmodified).

Average gradation and binder content (solvent extraction) test results are presented in Table 117. The overall average binder content from the obtained samples for the project was 4.8 percent, 0.2 percent below the design binder content. For sublot 1, the average binder content was just 0.1 percent low, and for sublot 2 the average binder content was 0.2 percent below the job mix formula. The average gradation was close to the job mix formula, with the majority of the sieves above the job mix formula, except for the dust content, which was 0.4 percent below than the JMF.

Gradation		Ov	erall	Sub	olot 1	Sub	lot 2
Sieve Size (mm)	JMF	Avg	% Diff	Avg	% Diff	Avg	% Diff
37.50	100.0	100.0	0.0	100.0	0.0	100.0	0.0
25.0	100.0	100.0	0.0	100.0	0.0	100.0	0.0
19	100.0	99.8	0.2	100.0	0.0	99.7	0.3
12.5	97.0	97.7	-0.7	98.3	-1.3	97.2	-0.2
9.5	85.0	88.6	-3.6	88.8	-3.8	88.3	-3.3
4.75	55.0	59.7	-4.7	60.0	-5.0	59.3	-4.3
2.36	37.0	42.7	-5.7	43.0	-6.0	42.4	-5.4
1.18	29.0	35.7	-6.7	36.2	-7.2	35.2	-6.2
0.6	22.0	29.7	-7.7	30.3	-8.3	29.1	-7.1
0.3	11.0	12.4	-1.4	12.5	-1.5	12.3	-1.3
0.15	8.0	6.8	1.2	6.7	1.3	6.9	1.1
0.075	4.9	4.5	0.4	4.4	0.5	4.6	0.3
Asphalt Content	5.0	4.8	0.2	4.9	0.1	4.8	0.2

Table 117: Average Gradation and Binder Content per Sublot, Project 20

Table 118 contains in-place air voids (water displacement, CoreLok, CoreReader, and dimensional analysis) and water absorption values (from AASHTO T166) for

individual cores obtained for Project 20. One core was damaged being transported back to NCAT and could not be tested. In Table 119, average in-place air voids and standard deviations for the combined data and for each sublot are given.

Sample	T166	CoreLok	CoreReader	Dimensional	Water Abs.,
ID	VTM, %	VTM, %	VTM, %	VTM, %	%(T166)
1	8.7	10.1	9.8	12.4	0.9
2	8.3	9.1	10.1	12.9	0.8
3	10.3	12.0	8.4	7.5	1.2
4	8.6	10.4	11.5	13.2	1.1
5			Damaged	l	
6	5.3	6.3	5.2	6.8	0.5
7	11.0	15.4	13.7	16.0	1.4
8	8.9	9.9	10.9	12.8	1.2
9	9.7	11.7	13.3	15.4	1.2
10	7.9	9.0	9.2	11.6	0.9

 Table 118: Core In-place Air Voids and Percent Absorption, Project 20

Table 119: Average In-place Air Voids and Standard Deviations, Project 20

		T166	Co	oreLok	Cor	eReader	Dim	ensional
	avg	std dev	avg	std dev	avg	std dev	avg	std dev
all data	8.7	1.6	10.4	2.5	10.2	2.6	12.1	3.1
sublot 1	9.0	0.9	10.4	1.2	10.0	1.3	11.5	2.7
sublot 2	8.6	2.1	10.5	3.4	10.5	3.5	12.5	3.7

The construction in-place air voids for the project averaged 8.0 percent, ranging from 5.5 percent to 11.6 percent, based on AASHTO T166 bulk specific gravity measurements. For sublot 1, the average in-place air void content was 8.4 percent, and was 7.5 percent for sublot 2.

Lift thickness, field, and lab permeability results for cores are presented in Table 120. The design lift thickness for Project 20 was 37.5 mm; the actual thickness averaged 34.5 mm, 3.0 mm lower than the target value. Lift thickness ranged from 24.5 mm to 38.1 mm, or from a t/NMAS ratio of 2.0:1 to 3.0:1. PQI density results for Project 20 are presented in Table 121.

The relationship between lift thickness and in-place air voids is illustrated in Figure 46. Analysis of the data indicated little correlation between in-place air voids and lift thickness ($R^2 = 0.14$). An ANOVA conducted on the regression confirmed that the relationship was not significant (p-value = 0.263). The thickness only changed due to variation in the thickness caused by a number of things. To effectively estimate the effect of thickness would require that the thickness be varied by design.

Sample	Sublot	Avg Thickness	Avg Field Permeability	Avg Lab Permeability
ID		(mm)	(10x-5 cm/s)	(10x-5 cm/s)
1	1	35.0	32	626
2	1	37.6	32	623
3	1	24.5	73	301
4	1	35.6	33	444
5	1	NA	28	NA
6	2	35.5	1	0
7	2	35.7	78	2045
8	2	35.0	39	831
9	2	33.5	85	702
10	2	38.1	57	0

Table 120: Average Lift Thickness, Field, and Lab Permeability on Cores, Project 20

Table 121: Pavement Quality Indicator In-place Density Results, Project 20

Test	Sublot	Run 1,	Run 2,	Run 3,	Core Avg.,
Number		pcf	pcf	pcf	pcf
1	1	121.4	120.4	121.2	120.8
2	1	121.4	120.7	120.7	120.8
3	1	117.9	119.4	120.1	120.0
4	1	121.1	120.9	120.7	120.4
5	1	119.4	120.0	120.0	119.4
6	2	121.9	121.9	122.0	122.7
7	2	118.9	119.5	119.3	119.0
8	2	119.9	120.9	120.5	120.4
9	2	119.7	119.5	119.1	119.0
10	2	119.9	119.2	121.4	119.8

Figure 46: Relationship Between Lift Thickness and In-place Air Voids, Project 20

Figure 47 illustrates the relationship between permeability and in-place air voids for Project 20. In Figure 47, three relationships are showed. They include field permeability and lab permeability results versus in-place air voids for cores and lab permeability results versus air voids for the lab compacted samples. The results for the lab compacted samples are presented in Table 122. In Figure 47, strong R² values were found for two of the three trendlines (0.86 for field permeability and 0.90 for lab permeability and lab samples). A low R² value was found for the regression on lab permeability and cores (0.15). This may have been caused by the small range in air void contents. The field permeability results suggested that the mix became permeable at an in-place air void content between 10 and 11 percent. Lab permeability test results for both cores and lab compacted samples suggested that the mix became permeable at an air void content between 4 and 5 percent.

Figure 47: Relationship Between Permeability and In-place Air Voids, Project 20

Sample	Sublot	T166	Avg Lab
ID		VTM,	Permeability (10x-5
		%	cm/s)
1	1	5.1	0
2	1	4.7	0
3	1	4.8	127
4	1	4.9	293
5	1	5.3	0
6	1	5.1	0
7	1	5.8	0
8	1	5.4	0
9	2	4.2	143
10	2	4.7	158
11	2	4.5	0
12	2	4.6	115
13	2	5.9	0
14	2	7.0	0
15	2	7.5	674
16	2	8.7	1117

Table 122: Lab Permeability Results for Lab Compacted Samples, Project 20

There is a lot of variability in the permeability values for all of the projects. This is not unexpected considering that a small change in permeability can result in a 10-fold change in the coefficient of permeability. For a mix to be permeable it has to have interconnected voids. Even for the same void content the amount of interconnected voids will likely vary considerably.